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ABSTRACT 
This report presents two research efforts that have been published as conference papers through 
the Transportation Research Board Annual Meeting, the first of which is under review for 
publication through the Transportation Research Record. 
 
The first research effort investigates the general application of naturalistic driving data to the 
modeling of car-following behavior.  The driver-specific data available from naturalistic driving 
studies provides a unique perspective from which to test and calibrate car-following models. As 
equipment and data storage costs continue to decline, the collection of data through in situ probe-
type vehicles is likely to become more popular, and thus there is a need to assess the feasibility 
of these data for the modeling of driver car-following behavior. The first research effort seeks to 
focus on the costs and benefits of naturalistic data for use in mobility applications. 
 
Any project seeking to utilize naturalistic data should plan for a complex and potentially costly 
data reduction process to extract mobility data. A case study is provided using the database from 
the 100-Car Study, conducted by the Virginia Tech Transportation Institute. One thousand 
minutes worth of data comprised of over 2,000 car-following events recorded across eight 
drivers is compiled herein, from a section of multilane highway located near Washington, D.C. 
The collected event data is used to calibrate four different car-following models, and a 
comparative analysis of model performance is conducted. The results of model calibration are 
given in tabular format, displayed on the fundamental diagram, and shown with sample event 
charts of speed-vs.-time and headway-vs.-time. The authors demonstrate that the Rakha-
Pasumarthy-Adjerid model performs best both in matching individual drivers and in matching 
aggregate results, when compared with the Gipps, Intelligent Driver, and Gaxis-Herman-Rothery 
models. 
 
The second effort examines how insights gained from naturalistic data may serve to improve 
existing car-following models.  The research presented analyzes the simplified behavioral 
vehicle longitudinal motion model, currently implemented in the INTEGRATION software, 
known as the Rakha-Pasumarthy-Adjerid (RPA) model. This model utilizes a steady-state 
formulation along with two constraints, namely: acceleration and collision avoidance. An 
analysis of the model using the naturalistic driving data identified a deficiency in the model 
formulation, in that it predicts more conservative driving behavior compared to naturalistic 
driving. Much of the error in simulated car-following behavior occurs when a car-following 
event is initiated. As a vehicle enters the lane in front of a subject vehicle, the spacing between 
the two vehicles is often much shorter than is desired; the observed behavior is that, rather than 
the following vehicle decelerating aggressively, the following vehicle coasts until the desired 
headway/spacing is achieved. Consequently, the model is enhanced to reflect this empirically 
observed behavior. Finally, a quantitative and qualitative evaluation of the original and proposed 
model formulations demonstrates that the proposed modification significantly decreases the 
modeling error and produces car-following behavior that is consistent with empirically observed 
driver behavior. 

 



 7 

Application of Naturalistic Driving Data to the Modeling of Driver Car-following Behavior 
 
 
John Sangster, MS, PE 
Center for Sustainable Mobility, Virginia Tech Transportation Institute 
3500 Transportation Research Plaza 
Blacksburg, VA 24061 
Phone: (540) 231-1500 
Email: johns80@vt.edu 
 
 
Hesham Rakha, Ph.D., P.Eng. (corresponding author) 
Charles E. Via, Jr. Department of Civil and Environmental Engineering 
Center for Sustainable Mobility, Virginia Tech Transportation Institute 
3500 Transportation Research Plaza 
Blacksburg, VA 24061 
Phone: (540) 231-1505 
Fax: (540) 231-1555 
Email: hrakha@vt.edu 
 
 
Jianhe Du, Ph.D. 
Center for Sustainable Mobility, Virginia Tech Transportation Institute 
3500 Transportation Research Plaza 
Blacksburg, VA 24061 
Phone: (540) 231-1500 
Email: jdu@vtti.vt.edu 
 

ABSTRACT 
The driver-specific data available from naturalistic driving studies provides a unique perspective 
from which to test and calibrate car-following models. As equipment and data storage costs 
continue to decline, the collection of data through in situ probe-type vehicles is likely to become 
more popular, and thus there is a need to assess the feasibility of these data for the modeling of 
driver car-following behavior. This paper seeks to focus on the costs and benefits of naturalistic 
data for use in mobility applications.  

Any project seeking to utilize naturalistic data should plan for a complex and potentially 
costly data reduction process to extract mobility data. A case study is provided using the 
database from the 100-Car Study, conducted by the Virginia Tech Transportation Institute. One 
thousand minutes worth of data comprised of over 2,000 car-following events recorded across 
eight drivers is compiled herein, from a section of multilane highway located near Washington, 
D.C. The collected event data is used to calibrate four different car-following models, and a 
comparative analysis of model performance is conducted. The results of model calibration are 
given in tabular format, displayed on the fundamental diagram, and shown with sample event 
charts of speed-vs.-time and headway-vs.-time. The authors demonstrate that the Rakha-
Pasumarthy-Adjerid model performs best both in matching individual drivers and in matching 
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aggregate results, when compared with the Gipps, Intelligent Driver, and Gaxis-Herman-Rothery 
models. 

INTRODUCTION 
Funding for large-scale naturalistic driving data studies has thus far been primarily for the 
purpose of conducting safety analysis, with application of the dataset in a mobility context done 
as a secondary objective. Data collected in a naturalistic way for safety studies can provide 
significant information including: detailed pre-crash/crash information; measures of driver 
distraction or drowsiness; instances of aggressive driving or driver error; and the incorporation of 
vehicle dynamics. Similar advantages can be found in the application of these data in the context 
of mobility applications, where naturalistic data are able to provide detailed driver information, 
while also providing real-world driving data with a minimal amount of bias. 

This paper seeks to examine the procedure of processing a large-scale naturalistic database 
for mobility analysis, specifically with application to the calibration of car-following models. In 
order to validate a given car-following model, observations must be made of lead-follower 
vehicle pairs, with comparisons made between the simulated follower and the observed follower 
behavior. The data used to validate car-following models in the past has primarily come from test 
tracks, simulators, or loop detectors. These studies either have driver-specific information and 
bias from lack of real-world driving situations, or accurate real-world driving data from 
anonymous drivers. Only recently has naturalistic driving data become available as an analysis 
data source [1]. 

There are many explanations of the importance of car-following models in microscopic 
traffic-simulation in the literature, with an informative and succinct example being that of 
Panwai and Dia [2], who explain that traffic-simulation tools provide the ability to evaluate and 
control different scenarios in an environment that doesn’t disrupt real-world traffic conditions. 
The data available from naturalistic driving behavior studies can provide unique insight into the 
quality of car-following models, particularly in their ability to accommodate diverse individual 
drivers. 

NATURALISTIC DRIVING DATA 
A natural consequence of the proliferation in cell-phone and computing power will be an 
increasing availability of naturalistic driving data, and it is essential for researchers to understand 
the complications of working with such large datasets. The large size of the database generated 
by a naturalistic driving study requires data reduction to be conducted using a carefully planned 
procedure. In the case of the 100-Car Study, the initial dataset includes 108 individual drivers, 
with nearly 337,000 hours of data collected across 207,000 trips, which results in more than 12 
billion database observations using a sampling frequency of 10 Hertz (i.e. data gathering every 
0.1 seconds). The data analyzed herein are identified using a geographic information system 
(GIS) application to visually select specific routes and drivers, exporting pertinent data to define 
trips of interest. Data validation is conducted on the selected data by examining outlier 
information. Some post-processing is necessary in cases where information is updated less often 
than is sampled. 

Data Collection 
Within the naturalistic driving study, each of the sensing subsystems within the vehicle is kept 
independent of the others in order to constrain failures to a single sensor type [3]. Sensors may 
include: a box to obtain data from the vehicle network on-board diagnostic (OBD) system; an 
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accelerometer box for longitudinal and lateral acceleration measurement; a system to provide 
information on the spacing between the lead and following vehicles; a system to detect conflicts 
with vehicles in adjacent lanes; an incident box to allow drivers to flag incidents for the research 
team; a video-based lane tracking system to measure lane keeping behavior; and video feeds for 
validation of other sensor data. The video feed may include multiple camera views monitoring 
the driver’s face and the driver’s side view of the road, the forward road view, the rear road 
view, the passenger side view of the road, and a view of the driver’s hands. Captured video data 
are synchronized with the other sensor data to allow simultaneous display of archived 
information. A global positioning system (GPS) is used to collect information on the vehicle 
position. 

Management of the data in a naturalistic driving study is of primary importance in order to 
ensure that the data gathered are accessible and secured, maximizing their utility. These datasets 
may contain billions of time-steps worth of data, and are generally managed through relational 
databases. 

Data Selection 
Through an SQL program application, database information are selected and saved as separate 
files differentiated by driver ID, with these files imported to a GIS application using the stored 
GPS data. Regular commuting routes for each driver are identified where possible, maintaining a 
tabular list of all drivers and their corresponding commonly traveled routes. In this way specific 
routes regularly traveled by multiple drivers are identified. It is essential to extract data for each 
driver for the identical roadway segment in order to isolate and characterize differences in driver 
behavior. In the case of the 100-Car study, it was found that multiple drivers traverse the Dulles 
Airport Access Road (DAAR) on a regular basis. Fifteen drivers identified through the GIS 
visual review yields a total of more than 500 hours’ of data, just over one percent of the total 
database. 

Event Processing 
With specific drivers and routes identified through visual inspection, a preliminary data subset is 
identified of all data points along the given route belonging to drivers who frequently use the 
route. This data not only includes all data points travelling within a certain radius of this route, 
and must be further analyzed to identify specific lead-follower vehicle pairs which may represent 
car-following events. A sample process designed for application to the 100-Car Study is seen in 
FIGURE 1, which may have application to other naturalistic data sets. 

Researchers wishing to investigate car-following behavior using naturalistic databases should 
not take the process diagram to be proscriptive, because other study databases are likely to be 
organized differently than was the 100 Car Study database.  The process begins with the subset 
of data selected using GIS, labeled as D***_DAAR.  Because an offset area method was used in 
GIS to select data, points beyond the limit of the study area were included in the subset of data, 
and were removed using a spreadsheet application by examining longitude information.  The 
pertinent data elements were then merged using an SQL application with the corresponding radar 
information, resulting in D***_DAAR_RAD.  Lead-follower pairs were generated from the 
radar information, and verified using the forward-facing video feed, resulting in 
D***_DAAR_EVNT.  Because the lead vehicle is often incorrectly renumbered partway through 
an event by the radar equipment, the D***_DAAR_EVTS file identifies the manually identified 
begin and end frame for an event, as well as the number associated with the lead vehicle over the 
course of the event.  The various datasets stored in the database are then merged using the event 
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information to generate the final file used for analysis, D***_DAAR_USE.  In all cases the *** 
in the file name refers to the individual driver number. 

 
FIGURE 1 Process diagram for generation of car-following data from selected GIS data. 
 

The forward facing radar used in the 100-Car Study tracks up to seven individual objects at a 
time, assigning identification numbers sequentially from 1 to 255 as each new object is observed. 
In reviewing the radar data it was concluded that the technology is not reliable for the purpose of 
systematically identifying car-following events. Errors observed with the radar equipment 
include: many vehicles are seen on the video but are not found by the radar; a vehicle being 
tracked by the radar is sometimes lost if the speed of that vehicle matches the speed of the probe 
vehicle; periodically the radar appears to experience a technical hiccup, with all tracked vehicles 
being lost, and new identification numbers assigned as they are re-acquired. Data noise generated 
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by the radar system is overcome by conducting manual review of potential car-following events, 
corroborating the forward-facing video with the radar data, as seen in FIGURE 2. The gray 
panel on the right displays the vehicles being tracked by the radar both in front and behind the 
vehicle, and is tied by data frame number to the video feeds displayed in the center of the screen. 
The top left video feed displays the driver’s face and the area adjacent to the vehicle on the 
driver’s side, and has been blanked out herein for privacy reasons. 

 

 
FIGURE 2 Example of visualization for data reduction. 
 

In addition to problems with the radar equipment, much of the identified data along the 
DAAR corridor experienced occlusion of the forward facing video feed for a variety of reasons, 
including: a lack of contrast during nighttime driving; the blurring of the view from rain 
precipitation; a covered view due to the build-up of frozen precipitation; and a lack of contrast 
due to glare at sunrise or sunset. The video feed is not the only system to experience data 
outages, with one estimate from the 100-Car Study indicating that 1.37 million miles of data are 
complete out of an estimated total of 1.80 million miles of possible data, resulting in a 24% loss 
of data due to major or minor failures in hardware and/or software [3]. For the dataset identified 
through the visual process using GIS, seven of the identified drivers exhibited a failure of the 
video, radar, or speed recording devices, resulting in only eight of the fifteen identified drivers 
generating usable data. 

Data Validation 
The speed of the follower vehicle is obtained from either the OBD or from an interpolation of the 
recorded geospatial coordinates. In the case of the 100-car study, both sources of speed data 
update their internal values at a frequency of one second, while the database retrieves and stores 
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the values at a frequency of one tenth of a second; in practice, this results in ten time-steps worth 
of data showing the same value, updated instantaneously to a new value, with the new value then 
held for ten time-steps. The OBD data was found to be more reliable than the GPS speed data; 
the spatial coordinates of a moving object in GPS are seen to have a tendency to lag and then 
catch up, resulting in a recorded speed that oscillates, sometimes greatly, about the actual speed 
traveled by the vehicle. The follower speed generated by the GPS is used as a check of the OBD 
speed, which itself regularly experiences faults with incorrect data or no data recorded. 

The radar data is an essential component of the naturalistic data for mobility applications, but 
is not as essential in conducting safety studies, so it may consequently suffer from either 
dependability or accuracy issues. The radar generally exhibits a capture area that is cone shaped, 
tracking multiple objects within the cone by assigning object identification numbers to each 
object as it is first acquired. If an object’s speed exactly matches that of the instrumented vehicle, 
it has a tendency to drop from the radar data, being assigned a new identification number as it is 
reacquired. For the data analyzed herein visual confirmation was conducted for each event, and 
in cases where a lead vehicle is assigned more than one identification number in the dataset, the 
value was manually overridden with the original vehicle identification number. 

Smoothing and Interpolating Data Elements 
When examining the OBD speed data it is seen that the recorded value will sometimes become 
fixed for short periods of time (a few seconds) at a given value before being updated with the 
correct information. The value is understood to be erroneous due both to changes in the recorded 
GPS speed values and due to the magnitude of the instantaneous acceleration observed when the 
value does eventually update. For this, and other reasons, outlier data are observed in the raw 
data obtained through the GIS application. Outlier data are identified within the dataset by 
checking the observed speed and acceleration values against the physical limitations of speed 
and acceleration anticipated knowing the vehicle characteristics. The outlier data are replaced 
with interpolated data using linear interpolation between two of the observed values considered 
to be valid, with a maximum length of interpolated data being two seconds. 

As a result, the dataset resulting after validation is a somewhat of a truncated version of the 
raw data. For example, the 99.9th percentile probe vehicle velocity observed in the raw data is 
40.10 m/s before validation and smoothing, and 32.04 m/s after. The maximum probe vehicle 
instantaneous acceleration and deceleration observed before smoothing is 303.0 m/s2, and 303.6 
m/s2, respectively. With smoothing the maximum deceleration rate is 9.012 m/s2, and the 
maximum acceleration rate is 8.893 m/s2, respectively. While the smoothed values are still 
beyond the physical limitations of the vehicles, they are representative of the step-wise accuracy 
of the recorded velocity. 

In order to provide vehicle trajectory profiles for analysis, the frequency with which values 
are updated is made equal to the frequency with which the data are analyzed.  To update the raw 
OBD speed data, updated on average every second, the observed value is maintained whenever it 
varies from the previous time step, and the data is removed whenever the value remains constant 
to the previous time step value; the missing data is then refilled using linear interpolation, so 
long as the gap between observed values does not exceed two seconds, in which case the event is 
split into two separate events on either side of the data gap. Because a number of car-following 
models require an offset time, only events longer than five seconds in duration, 51 time-steps or 
greater, were used in the analysis. This interpolation of data elements serves as a final validation 
of the lead-follower pairs, identifying any errors occurring during the previous data reduction 
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steps. An example of how the interpolation of data elements affects vehicle speed trajectories is 
seen in FIGURE 3. 
 

   
 (a) Speed vs. time without interpolation (b) Speed vs. time after interpolation 
FIGURE 3 Effect of interpolation on sample lead and follower vehicle speed profiles. 
 
Summary of the Data Reduction Process 
The procedure outlined herein is applicable to conducting data reduction for any naturalistic 
driving database, and is intended for use by others in planning future research. A first step in 
selecting a subset of data for analysis is the use of a GIS application to identify frequently 
traveled routes, in order to generate a significant number of car-following events on a given 
facility. With a subset of the total travel data selected, car-following events must be identified 
from the database; the complexity of this step may vary depending on how many travel lanes 
there are on the facility selected. In the example provided herein, events were validated by 
corroborating the radar feeds with forward-facing video. 

Future research projects can expect to encounter complications with data validation when 
using naturalistic driving data. The case study herein observed that equipment recording video, 
speed, and radar information all experienced regular failures; as a result only half of the original 
data identified from the dataset was valid for analysis. Future studies should anticipate these 
types of equipment failures during the data collection process. Additionally, it was found that the 
data values stored by the equipment were updated less frequently than they were reported, 
requiring the development of an interpolation and smoothing process to impute missing data and 
smooth the data.  
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SUMMARY OF DATA ANALYZED 
A tabular summary of the data analyzed for this study is seen in TABLE 1. Note that seven of 
the initially identified fifteen drivers are missing data critical for the identification of car-
following events, resulting in a total dataset of 1,000 minutes of car-following data from the 
initial 30,213 minutes of data identified in the GIS tool. 
 
TABLE 1 Quantity of data included herein 

  Driver Raw Data Car-Following Pairings 
  Number Minutes Events Minutes 

V
al

id
 D

at
a 

124 636 188 80 
304 1,424 149 69 
316 4,280 332 191 
350 1,797 274 62 
358 1,712 443 186 
363 2,854 274 176 
367 2,991 507 211 
462 813 72 25 

In
va

lid
 D

at
a 

102 152 Not Enough Leader-Follower Data 
351 2,431 Missing Video or Speed Data 
359 2,921 Missing Video or Speed Data 
402 2,171 Missing Video or Speed Data 
409 5,228 Missing Video or Speed Data 
452 228 Missing Video or Speed Data 
461 576 Missing Video or Speed Data 

  Total 30,213 2,239 1,000 
 

The macroscopic diagram provides a visual context to analyze and compare driver behavior 
from a naturalistic driving behavior study, such as seen in FIGURE 4.  
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 (a) Flow vs. speed (b) Density vs. speed 

 
 (c) Spacing vs. speed (d) Density vs. flow 
FIGURE 4 Combined fundamental diagram for car-following event data; displaying (a) 
flow vs. speed, (b) density vs. speed, (c) spacing vs. speed, and (d) density vs. flow. 
 

The data from the eight drivers is aggregated into four views of the fundamental interaction 
diagram, with grayscale used to indicate steady-state conditions separately from acceleration and 
deceleration regimes. The darkness of the data points indicates the magnitude of acceleration, 
with near-black points indicating high acceleration, and near-white points indicating high 
deceleration. The interaction diagram will serve as a primary format for visualizing the results of 
simulated car-following models, as well as analyzing other areas of interest related to driver 
behavior. 
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TRAFFIC SIMULATION CAR-FOLLOWING MODELS 
Each car-following model predicts the time-space trajectory of a following vehicle when 
provided the time-space trajectory of a leading vehicle, along with the original location and 
velocity of the following vehicle. The parameters of each model are calibrated such that the 
resulting simulated behavior matches the observed behavior as closely as possible. In calibrating 
the model parameters it is necessary to define limiting bounds for the parameter values, define an 
error function, select an optimization methodology to minimize the objective function, and 
generate observed and simulated vehicle trajectories. 
As presented in this paper, the car-following models share a common notation, which includes: 

𝑛 = vehicle number 𝑛: the leading vehicle 
𝑛 + 1 = vehicle number 𝑛 + 1: the following vehicle 
𝑥, �̇�, �̈� = vehicle position, velocity, and acceleration, respectively 
�̈�𝑑−𝑚𝑎𝑥 = maximum acceleration rate desired by driver of vehicle 𝑛 + 1 
�̈�𝑑−𝑚𝑖𝑛 = maximum deceleration rate desired by driver of vehicle 𝑛 + 1 
�̇�𝑑 = velocity desired by driver of vehicle 𝑛 + 1 
∆ = the change in value for a given variable at a given time step between the 

leading and following vehicle 
∆𝑥𝑗 = vehicle spacing at standstill (i.e. jam density spacing) 
𝑡 = the current time step 
𝜏 = the perception reaction time 

An example of the notation is: 
∆�̇�𝑛→𝑛+1(𝑡 − 𝜏) = the change in velocity between the leading and following 

vehicle that occurred at the ( t – 𝜏 ) time-step. 

Gaxis-Herman-Rothery (GHR) Model 
The GHR type of model, also known as the GM model, involves research spanning from the late 
1950’s until the mid-1960’s [4], [5]. A discussion on the development of the General Motors 
models along with typical parameter values can be found in May [6], among others. The fifth and 
final formulation of the model, sometimes referred to as the GM-5 model, generalizes the 
previous four forms and is seen in Equation (1). 
 

�̈�𝑛+1(𝑡) = � 𝛼[�̇�𝑛+1(𝑡)]𝑧

[∆𝑥𝑛→𝑛+1(𝑡−𝜏)]𝑙
� ∙ [∆�̇�𝑛→𝑛+1(𝑡 − 𝜏)]  (1) 

𝑊ℎ𝑒𝑟𝑒: 𝛼, 𝑧, 𝑙 = model parameters that require alibration 
 

The GHR model is particularly significant in the pantheon of car-following models as many 
other microscopic and macroscopic models can be represented as special cases of the GHR 
model. The first single-regime traffic stream model proposed by Greenshields in 1935 is one 
such case [7]. It can be expressed as a GHR model taking the z and l parameters to be 0 and 2, 
respectively. The CORSIM transportation simulation software operates based on the PITT 
model, which has been shown to be analogous to the Pipes car-following model [8–10]. In turn, 
the formulation of the Pipes model can be seen to be a special case of the GHR model with the z 
and l parameters set to zero. 

As the other models analyzed herein are representative of higher order models, the GM-5 
formulation of the GHR models will be used in the analysis portion of this paper. Additionally, 
in line with previously documented calibration procedures for the GM-5 car-following model, 
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the z and l parameters will be calibrated separately under acceleration and deceleration 
conditions, which provides a like number of calibration parameters among the models analyzed 
herein [11]. 

When simulating the GHR model for this study additional constraints are added to the 
calculations; the simulated velocity is held at a minimum of 0.1 m/s, and the simulated position 
offset is held at a minimum of 5 meters behind the leading vehicle. 

Gipps Model 
First published in 1981, Gipps developed a model as a response to the existing proliferation of 
GHR type models [12]. The model seeks to: mimic the behavior of real traffic; use parameters 
that correspond to characteristics of drivers and vehicles so that most can be assigned without 
calibration procedures; and provide reasonable results if the interval of speed and position 
calculations is similar to that of the reaction time. The model takes the form of Equation (2). 
 

�̇�𝑛+1(𝑡) = min 𝑜𝑓:   

�̇�𝑛+1(𝑡 − 𝜏) + 2.5�̈�𝑑−𝑚𝑎𝑥 ∙ ∆𝑡 ∙ �1 −
�̇�𝑛+1(𝑡−𝜏)

�̇�𝑑
� ∙ �0.025 + �̇�𝑛+1(𝑡−𝜏)

�̇�𝑑
 , 

�̈�𝑑−𝑚𝑖𝑛 ∙ ∆𝑡 + ���̈�𝑑−𝑚𝑖𝑛2 ∙ (∆𝑡)2 − �̈�𝑑−𝑚𝑖𝑛 ∙ �
2�∆𝑥𝑛→𝑛+1(𝑡 − 𝜏) − ∆𝑥𝑗� −

[�̇�𝑛+1(𝑡 − 𝜏) ∙ ∆𝑡] − �̇�𝑛(𝑡−𝜏)2

�̈�(𝑛)−𝑚𝑖𝑛

�� (2) 

𝑊ℎ𝑒𝑟𝑒: �̈�(𝑛)−𝑚𝑖𝑛 = 𝑚𝑖𝑛 �−3.0𝑚 𝑠2⁄ , �̈�𝑑−𝑚𝑖𝑛−3.0
2

� 
the estimate made by the driver of vehicle 𝑛 + 1 of the 
maximum deceleration rate desired by the driver of vehicle 𝑛 
 

The first component of the two-regime equation applies to traffic conditions with 
unconstrained flow, also known as steady-state flow conditions. The second component 
addresses conditions in constrained flow, where the velocity of the follower vehicle is based 
primarily on the time/space headway the must necessarily maintain a safe distance between it 
and the lead vehicle. Since the original publication of the Gipps’ model, a number of 
publications examining the calibration of the Gipps model have brought up critique in two areas: 
the feasible range for the expected maximum deceleration of the leading vehicle; and the 
relationship between the perception-reaction time and the time-step [13–15]. 

Wilson primarily examined the wave-stability of the Gipps model, and specifically looked at 
cases where �̈�𝑑−𝑚𝑖𝑛 > �̈�𝑑−𝑚𝑖𝑛,𝑛 or �̈�𝑑−𝑚𝑖𝑛 < �̈�𝑑−𝑚𝑖𝑛,𝑛 [13]. Wilson determined that in some 
cases that the anticipated deceleration of the leading vehicle is expected to be less than the 
desired maximum deceleration of the following vehicle, the resulting time-space wave 
phenomenon becomes unstable. If the original formulation of the Gipps model is used, the 
implication would be that any follower vehicle with a desired deceleration in excess of -3.0 m/s2 
would fall into the category of potentially being infeasible. For the purposes of the model 
calibration performed herein, Gipps’ original formulation for the anticipated leading vehicle 
maximum deceleration is used. 

Rakha et. al, building on the work of Wilson, developed a method to express the steady-state 
portion of the Gipps model on the macroscopic fundamental diagram [14], [15]. The speed-flow 
relationship can be computed using Equation (3), and subsequently, the perception-reaction time 
can be computed using Equation (4). 
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𝑞 = 1,000∗�̇�𝑛+1

∆𝑥𝑗+
1
2.4∗𝜏∗�̇�𝑛+1+

1
25.92∗�̈�𝑑−𝑚𝑖𝑛

∗�1−
�̈�𝑑−𝑚𝑖𝑛
�̈�𝑑−𝑚𝑖𝑛,𝑛

�∗�̇�𝑛+12
  (3) 

𝜏𝑚 = 2.4�1,000
𝑞𝑐

− ∆𝑥𝑗
�̇�𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

− �̇�𝑐
25.92∗�̈�𝑑−𝑚𝑖𝑛

�1 − �̈�𝑑−𝑚𝑖𝑛
�̈�𝑑−𝑚𝑖𝑛,𝑛

��  (4) 

𝑊ℎ𝑒𝑟𝑒: 𝑞 = flow rate (veh/hr/ln) 
𝑞𝑐 = flow rate at capacity (veh/hr/ln) 
�̇�𝑐 = speed-at-capacity (m/s) 
𝜏𝑚 = perception reaction time calculated from macroscopic 

measures (s) 
 

When simulating the Gipps model for this study additional constraints were added to the 
calculations; the simulated velocity was held at a minimum of 0.1 m/s. 

Intelligent Driver Model (IDM) 
The Intelligent Driver Model (IDM) was developed as a high-fidelity model trying to reproduce 
traffic as realistically as possible, with a small number of parameters, and realistic breaking 
reactions [16]. The authors of the IDM, as shown in Equation (5), cite the Gipps model as 
achieving these goals, though they attempt to overcome its limitations by introducing instabilities 
or hysteresis effects for vanishing fluctuations. 
 

�̈�𝑛+1(𝑡) = �̈�𝑑−𝑚𝑎𝑥

⎩
⎨

⎧
1 − ��̇�𝑛+1(𝑡)

�̇�𝑑
�
𝛿
− �

�∆𝑥𝑗−𝑙𝑛�+(�̇�𝑛+1(𝑡)∙𝜏𝑆)+�̇�𝑛+1(𝑡)[∆�̇�𝑛→𝑛+1(𝑡)]

2∙��̈�𝑑−𝑚𝑎𝑥∙��̈�𝑑−𝑚𝑖𝑛�

∆𝑥𝑛→𝑛+1(𝑡)−𝑙𝑛
�

2

⎭
⎬

⎫
  (5) 

𝑊ℎ𝑒𝑟𝑒: 𝛿 = acceleration exponent 
𝜏𝑆 = safe time headway 
𝑙𝑛 = approximate length of vehicle 𝑛, taken to be 4.5 meters 
 

The IDM examines the maximum possible acceleration, and combines both acceleration and 
deceleration strategies into the formulation. The acceleration strategy takes the instantaneous 
ratio of the current velocity and desired velocity, and raises this value by the acceleration 
exponent, taken to be a default value of 4 in the original documentation. The deceleration 
strategy examines the desired spacing as a function of velocity of the following vehicle and the 
difference in velocity between the leading and following vehicles, and squares the result of this 
desired spacing divided by the current space headway. Effectively, this formulation balances the 
pull of the desired velocity against the push of the desired spacing. 

When simulating the Intelligent Driver model for this study additional constraints were added 
to the calculations; the simulated velocity was held at a minimum of 0.1 m/s. 

Rakha-Pasumarthy-Adjerid (RPA) Model 
Similar to the Gipps model, the RPA model seeks to use parameters that correspond to 
characteristics of drivers and vehicles, enabling the calibration parameters to be assessed based 
on objective measures [17–19]. The model uses the Van Aerde steady-state traffic stream model 
first proposed in a nonlinear, single-regime functional form in 1995, as seen in Equation (6). 
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∆𝑥𝑛→𝑛+1(𝑡) = 𝑐1 + 𝑐2
�̇�𝑑−�̇�𝑛+1(𝑡) + 𝑐3 ∙ �̇�𝑛+1(𝑡) (6) 

 
This formulation provides the space headway of the leader-follower pair at time (t) using the 

velocity of the follower vehicle and four driver/vehicle calibrated parameters. The first 
calibration parameter, 𝑐1, is the fixed distance headway constant (m). The second calibration 
parameter, 𝑐2, is the first variable headway constant (m2/s), and provides a measure of the 
driver’s desire to return to their desired speed. The third calibration parameter, 𝑐3, is the second 
variable headway constant (s), analogous to the driver sensitivity parameter in the Pipes model. It 
has been shown that constraints may be applied on the three calibration parameters by 
considering limitations experienced at jam conditions and capacity conditions, subscripts j and c 
respectively, as in Equation (7) [20], [21]. 

 
𝑐1 = ∆𝑥𝑗∙�̇�𝑓

�̇�𝑐2
�2�̇�𝑐 − �̇�𝑓�; 𝑐2 = ∆𝑥𝑗∙�̇�𝑓

�̇�𝑐2
��̇�𝑓 − �̇�𝑐�

2
; 𝑐3 = �∆𝑥𝑐�̇�𝑐 −

∆𝑥𝑗∙�̇�𝑓
�̇�𝑐2

� (7) 
 

The application of these constraint conditions and the translation of the Van Aerde model 
into a speed formulation results in the Equation (8). 

 

�̇�𝑛+1(𝑡) = −𝑐1+𝑐3∙�̇�𝑑+∆𝑥𝑛→𝑛+1(𝑡)−�[𝑐1−𝑐3∙�̇�𝑑−∆𝑥𝑛→𝑛+1(𝑡)]2−4∙𝑐3[∆𝑥𝑛→𝑛+1(𝑡)∙�̇�𝑑−𝑐1∙�̇�𝑑−𝑐2]
2∙𝑐3

  (8) 
 

The RPA model imposes limitations on the steady-state Van Aerde model to ensure collision 
avoidance, and to account for vehicle dynamics constraints, as demonstrated by Park et al [22].  
The collision avoidance component is shown in Equation (9). 

 

�̇�𝑛+1(𝑡) = �[�̇�𝑛(𝑡)]2 + 11.76 ∙ �∆𝑥𝑛→𝑛+1(𝑡) − ∆𝑥𝑗�   (9) 

 
A detailed explanation of the application of the vehicle dynamics model, as seen in Equation 

(10) is beyond the scope of this study, but can be found in a publication by Rakha et al. [23]. 
 
 

�̇�𝑛+1(𝑡) = �̇�𝑛+1(𝑡 − ∆𝑡) + ∆𝑡 ∙ 𝐹𝑛+1(𝑡−∆𝑡)−𝑅𝑛+1(𝑡−∆𝑡)
𝑚𝑎𝑠𝑠𝑛+1

   (10) 

𝑊ℎ𝑒𝑟𝑒: 𝐹𝑛+1(𝑡 − ∆𝑡) = 𝑚𝑖𝑛 �3,600 ∗ 𝜂 ∗ 𝛾∗𝑃
�̇�𝑛+1(𝑡−∆𝑡)   , 9.8066 ∗ 𝑀𝑡𝑎 ∗ 𝜇� 

𝑅𝑛+1(𝑡 − ∆𝑡) = 0.047285 ∗ 𝐶𝑑 ∗ 𝐴𝑓 ∗ �̇�𝑛+1(𝑡 − ∆𝑡)2 + 9.8066 ∗
𝑚𝑎𝑠𝑠𝑛+1 ∗ 𝐶𝑟[𝑐𝑟2 ∗ �̇�𝑛+1(𝑡 − ∆𝑡) + 𝑐𝑟3]  

 
The formulation included herein is nearly identical to that of the formulation provided in 

Rakha et al. [21], with the exception of gamma (𝛾) being applied to engine power, where gamma 
is equal to the maximum throttle input observed for a given driver in the dataset. 

The parameters included in the vehicle dynamics model not previously defined include: 
𝐹𝑛+1 = resultant force (N) 
𝑅𝑛+1 = total resistive force (N) 
𝑚𝑎𝑠𝑠𝑛+1 = vehicle mass (kg) of vehicle n + 1 
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𝜂 = driveline efficiency (unitless), taken as 0.7 herein 
𝛾 = acceleration reduction factor (unitless), taken from the maximum 

measured percentage throttle depression for each driver herein 
𝑃 = vehicle power (kW) 
𝑀𝑡𝑎 = mass of the vehicle on the tractive axle (kg), taken to be 55% of total 

vehicle mass herein 
𝜇 = coefficient of roadway adhesion (unitless), taken as 0.6 herein 
𝐶𝑑 = drag coefficient (unitless) 
𝐴𝑓 = vehicle frontal area (meters squared) 
𝐶𝑟 = rolling coefficient (unitless), taken as 0.00125 herein 
𝑐𝑟2, 𝑐𝑟3 = rolling resistance coefficients (unitless), taken as 0.0328 and 4.575 

herein, respectively 
 

Recent research, to be published elsewhere, demonstrates the need for a fourth component 
added to the RPA model to account for driver preferences when forced to decelerate [24]. It is 
found that when a vehicle encounters a space headway shorter than is desired, such as on a 
multilane highway when a leading vehicle first enters the driver’s lane from an adjacent lane, the 
driver will decelerate by coasting so long as safety considerations are met. The rate of 
deceleration when coasting is found to be approximately equal to the deceleration predicted by 
the vehicle dynamics model, seen in Equation (10) when the value of the throttle, 𝛾, is set to 
zero. 

The components of the RPA model, being represented by Equations (8), (9), and (10) are 
implemented as shown in Equation (11). A full explanation can be found elsewhere [24]. 

 
�̇�𝑛+1(𝑡) = max [min(𝐸𝑞. 9 , 𝐸𝑞. 10 𝑤𝑖𝑡ℎ 𝛾 = 0) , min(𝐸𝑞. 8 , 𝐸𝑞. 9 , 𝐸𝑞. 10)]  (11) 

PARAMETER CALIBRATION 
Each car-following model predicts the time-space trajectory of a following vehicle when 
provided with the time-space trajectory of a leading vehicle, and the original location and 
velocity of the following vehicle. The parameters of each model are calibrated such that the 
resulting simulated behavior matches the observed behavior as closely as possible. To compute 
these calibrated parameter values it is necessary to generate observed and simulated vehicle 
trajectories, set limiting bounds on the parameter values, define an error function, and select an 
optimization method to minimize the error objective function. 

Discrete Time Generation of Vehicle Trajectories 
In the case of the GHR, and Gipps models, the predicted acceleration of the following vehicle at 
time-step (𝑡) is dependent on the vehicle trajectory information at time-step (𝑡 − 𝜏), therefore all 
location (𝑥), velocity (�̇�), and acceleration (�̈�) information for the simulated vehicle trajectory 
that occurs during the initial time 𝜏 is set equal to the observed information during that time. 

The GHR, and IDM methodologies each generate the anticipated acceleration of the 
following vehicle in a given time-step: �̈�𝑛+1(𝑡). This information in itself does not provide the 
vehicle trajectory of the following vehicle, which must be estimated from the predicted 
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acceleration. The forward Euler method was used to solve for the vehicle position and speed, as 
shown in Equations (12) and (13). 

 
�̇�𝑛+1(𝑡) = �̇�𝑛+1(𝑡 − ∆𝑡) + ∆𝑡 ∙ �̈�𝑛+1(𝑡 − ∆𝑡) (12) 
𝑥𝑛+1(𝑡) = 𝑥𝑛+1(𝑡 − ∆𝑡) + ∆𝑡 ∙ �̇�𝑛+1(𝑡 − ∆𝑡) (13) 
 

Alternatively, the Gipps and RPA models generate a predicted velocity value for a given 
time-step, with a translation to acceleration as shown in Equation (14). 

 
�̈�𝑛+1(𝑡) = ∆𝑡−1 ∙ [�̇�𝑛+1(𝑡 + ∆𝑡) − �̇�𝑛+1(𝑡)] (14) 
 

Parameter Feasible Ranges 
When performing model calibration it is necessary to set upper and lower limits for the values of 
each parameter. Many of the parameters can be fixed outright for each driver by examining both 
the raw dataset and by examining the macroscopic data. The macroscopic data is analyzed using 
a heuristic automated tool (SPD-CAL), described in a publication by Rakha and Arafeh [25]. The 
desired velocity for each driver is taken from the values generated by SPD-CAL, and is used in 
the Gipps, IDM, and RPA models.  

The minimum and maximum acceptable acceleration values for the follower vehicle are a 
result of taking the minimum and the maximum observed values from each driver. The 
anticipated maximum deceleration rate of the leading vehicle is determined from Gipps’ 
assumptions, as previously shown in Equation (2). A mathematical analysis of the Gipps model 
by Wilson [13], and subsequently by Rakha and Wang [14] show that linear continuity may be 
lost when �̈�𝑑−𝑚𝑖𝑛 < �̈�𝑑−𝑚𝑖𝑛,𝑛, whereas the original formulation by Gipps [12] has �̈�𝑑−𝑚𝑖𝑛 <
�̈�𝑑−𝑚𝑖𝑛,𝑛 only when �̈�𝑑−𝑚𝑖𝑛 < 3, and �̈�𝑑−𝑚𝑖𝑛,𝑛 = 3+�̈�𝑑−𝑚𝑖𝑛

2
 otherwise. The original Gipps 

formulation of �̈�𝑑−𝑚𝑖𝑛,𝑛 is held herein, but further study is warranted on the calculation of this 
parameter. 

The various parameter bounds optimized using microscopic simulation are based on 
recommendations in the literature [11], [16]. Calibration is conducted using the evolutionary 
non-linear approach applied in Microsoft Excel version 14.0, which utilizes a genetic algorithm 
to find local minima and a multi-start function to find global minima. It was necessary to use a 
heuristic calibration methodology due to the large quantity of data being analyzed and the 
nonlinear nature of the objective function. 

Optimization Functions to Match Simulated and Observed Results 
The calibration of car-following models consists of determining values for the variable 
parameters that result in the best match between the observed behavior of a following vehicle 
and the simulated behavior of the same following vehicle, using the observed behavior of a 
leading vehicle as model input. Punzo and Simonelli [26] examine a variety of calibration 
methods, citing that the error tests in common use are the root mean square error (RMSE), the 
root mean square percentage error (RMSPE), and Theil’s inequality coefficient (U). It is noted 
that the choice of performance measure in the objective function may condition the results. 
Because it is desirable to compare the error measures both between models and between 
individual drivers for a given model, the authors herein have decided to use a variant of the 
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RMPSE, taking both speed and space headway as objective measures, as shown in Equation 
(15). 
 

𝐹��̇�𝑛+1,𝑠𝑖𝑚(𝑡),∆𝑥𝑛→𝑛+1,𝑠𝑖𝑚(𝑡) � =  

�
∑��̇�𝑛+1,𝑜𝑏𝑠(𝑡)−�̇�𝑛+1,𝑠𝑖𝑚(𝑡)�

2

∑��̇�𝑛+1,𝑜𝑏𝑠(𝑡)�
2 + �

∑�∆𝑥𝑛→𝑛+1,𝑜𝑏𝑠(𝑡)−∆𝑥𝑛→𝑛+1,𝑠𝑖𝑚(𝑡)�
2

∑�∆𝑥𝑛→𝑛+1,𝑜𝑏𝑠(𝑡)�
2   (15) 

RESULTS OF PARAMETER CALIBRATION 
A listing of the calibrated parameters for the eight drivers, as well as aggregate results, is given 
in TABLE 2 along with corresponding measures of error. 
 
TABLE 2 (a) Results for the Gaxis-Herman-Rothery model 

Parameter Min Max D124 D304 D316 D350 D358 D363 D367 D462 Agg. 
𝝉𝑮𝑯𝑹 a 1.0 3.0 2.0 2.3 1.8 2.2 2.0 2.3 1.0 1.6 2.3 
𝜶 a 10 60 60.0 60.0 60.0 60.0 30.0 60.0 18.9 60.0 60.0 
𝒛𝒂 a -0.5 1.0 0.28 -0.50 0.52 0.27 0.77 -0.42 0.26 0.39 0.29 
𝒍𝒂 a 1.5 2.5 2.10 1.59 2.09 2.06 2.01 1.50 1.60 2.41 2.07 
𝒛𝒅 a 0.0 1.0 0.00 0.92 0.00 0.00 0.00 0.29 0.00 0.00 0.00 
𝒍𝒅 a 1.5 3.0 1.95 3.00 1.82 1.84 1.51 2.44 1.52 2.24 1.94 

No. Obs. - - 44,051 38,431 108,567 33,976 102,521 99,545 121,667 13,565 551,406 
RMSPE - - 0.00079 0.00082 0.00096 0.00080 0.00104 0.00046 0.00104 0.00069 0.00033 
a denotes values optimized through optimization  
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TABLE 2 (b) Results for the Gipps model 
Parameter D124 D304 D316 D350 D358 D363 D367 D462 Agg. 

𝝉𝒎 b 0.8 0.4 1.3 1.2 1.4 0.8 1.3 0.4 1.1 
∆𝒙𝒋𝒂𝒎 b 6.70 6.51 8.09 7.27 6.21 6.67 5.90 7.62 5.92 
�̇�𝒅 b 29.14 31.94 26.81 26.06 32.22 31.94 26.22 31.94 28.31 

�̈�𝒅−𝒎𝒂𝒙 c 4.167 2.778 2.778 3.472 4.167 3.472 5.948 1.852 5.948 
�̈�𝒅−𝒎𝒊𝒏 c -4.630 -2.778 -3.472 -5.556 -5.556 -4.861 -5.961 -2.451 -5.961 
�̈�(𝒏)−𝒎𝒊𝒏 c -3.815 -3.000 -3.236 -4.278 -4.278 -3.931 -4.481 -3.000 -4.481 
No. Obs. 46,307 41,357 110,227 36,666 105,179 103,655 120,146 14,429 578,274 
RMSPE 0.00064 0.00033 0.00030 0.00094 0.00028 0.00019 0.00040 0.00055 0.00014 
b denotes values optimized using SPD-CAL 
c denotes values observed from dataset 

 
TABLE 2 (c) Results for the Intelligent Driver model 

Parameter Min Max D124 D304 D316 D350 D358 D363 D367 D462 Agg. 
𝝉𝑺 a 1.0 3.0 1.32 3.00 2.52 2.09 2.37 2.37 1.90 2.20 1.72 

∆𝒙𝒋𝒂𝒎 b - - 6.70 6.51 8.09 7.27 6.21 6.67 5.90 7.62 5.92 
�̇�𝒅 b - - 29.14 31.94 26.81 26.06 32.22 31.94 26.22 31.94 28.31 

�̈�𝒅−𝒎𝒂𝒙 c - - 4.167 2.778 2.778 3.472 4.167 3.472 5.948 1.852 5.948 
�̈�𝒅−𝒎𝒊𝒏 c - - -4.630 -2.778 -3.472 -5.556 -5.556 -4.861 -5.961 -2.451 -5.961 
𝜹 a 10 40 12.40 10.00 28.86 17.96 16.74 12.26 17.44 10.00 16.79 

No. Obs. - - 45,367 37,507 106,243 34,514 101,192 99,545 117,104 13,133 564,840 
RMSPE - - 0.00142 0.00172 0.00101 0.00181 0.00069 0.00068 0.00057 0.00328 0.00026 

a denotes values optimized through optimization 
b denotes values optimized using SPD-CAL 
c denotes values observed from dataset 

 
TABLE 2 (d) Results for the Rakha-Pasumarthy-Adjerid model 

Parameter D124 D304 D316 D350 D358 D363 D367 D462 Agg. 
𝜸 c 0.631 0.600 0.710 0.537 0.576 0.529 0.764 0.639 0.764 

�̈�𝒅−𝒎𝒊𝒏 c -4.630 -2.778 -3.472 -5.556 -5.556 -4.861 -5.961 -2.451 -5.961 
𝒌𝒋 b 0.149 0.154 0.124 0.138 0.161 0.150 0.170 0.131 0.169 
𝒒𝒄 b 0.948 1.000 0.523 0.611 0.514 0.975 0.569 1.000 0.662 
�̇�𝒄 b 23.56 16.67 26.81 22.31 19.14 19.06 17.89 22.22 28.31 
�̇�𝒅 b 29.14 31.94 26.81 26.06 32.22 31.94 26.22 31.94 28.31 

V
eh

ic
le

 𝑷 c 90 90 90 90 145 145 90 d 119 varies 
𝒎𝒂𝒔𝒔 c 1190 1090 1090 1090 1375 1375 1090 d 1900 varies 
𝑪𝒅 c 0.36 0.40 0.40 0.40 0.40 0.40 0.40 d 0.50 varies 
𝑨𝒇 c 2.06 2.00 2.00 2.00 2.18 2.18 2.00 d 2.94 varies 

No. Obs. 47,623 41,819 114,211 39,625 110,938 105,573 126,170 14,645 600,604 
RMSPE 0.00063 0.00031 0.00026 0.00082 0.00026 0.00015 0.00038 0.00035 0.00012 
b denotes values optimized using SPD-CAL 
c denotes values observed from the dataset 
d denotes assumed values due to a lack of documented information  
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TABLE 2(e) Summary table comparing error results 
Parameter D124 D304 D316 D350 D358 D363 D367 D462 Aggregate 
𝑮𝑯𝑹 0.00079 0.00082 0.00096 0.00080 0.00104 0.00046 0.00104 0.00069 0.00033 
𝑮𝒊𝒑𝒑𝒔 0.00064 0.00033 0.00030 0.00094 0.00028 0.00019 0.00040 0.00055 0.00014 
𝑰𝑫𝑴 0.00142 0.00172 0.00101 0.00181 0.00069 0.00068 0.00057 0.00328 0.00026 
𝑹𝑷𝑨 0.00063 0.00031 0.00026 0.00082 0.00026 0.00015 0.00038 0.00035 0.00012 

 
The RPA model is found to provide the best overall fit to the naturalistic dataset analyzed 

herein, with the Gipps model ranked second. As formulated herein, the GHR, Gipps, and IDM 
models each have six calibration parameters, and can be considered to be of equivalent 
complexity. The RPA model has six calibration parameters other than those related to the vehicle 
dynamics component, with the specific vehicle driven serving as a seventh parameter, 
determining all of the elements of the vehicle dynamics model analyzed herein. Though there is 
an increase in complexity from the Gipps model to the RPA model, there is also a corresponding 
decrease seen in the error function. Because the naturalistic data inherently includes information 
regarding the specific vehicle dynamics of each driver, the quantitative results suggest that the 
RPA model is most appropriate to fully utilize this type of dataset. 

Due to the close proximity of the error values determined for the RPA model and the Gipps 
model, additional statistical analysis was conducted to determine significance.  By using the 
parameters calculated for individual drivers, the data was re-processed to generate error values 
from the objective function for each individual car-following event.  The distribution of these 
events was found to be non-normal, requiring non-parametric analysis.  By pairing the results of 
the various models using the individual events, a Wilcoxon Signed-Rank Test was performed 
using the JMP Pro statistical analysis software.  With a sample size of 2,238 individual events, 
the probability that the RPA model will perform better than the Gipps model was determined to 
be 0.9977.  All other relationships between the four models were found to be statistically 
significant as well, with probabilities greater than or equal to 0.9999. 

Driver 316 is selected for further analysis for two reasons; the dataset includes a large 
amount of data for this driver, and the relative goodness of fit for each of the models is 
approximately equal between this particular driver and the aggregate data results. To examine 
qualitative data, FIGURE 5 displays a sample interaction diagram, in the form of speed vs. 
spacing for each of the four car-following models analyzed herein. The charts display observed 
data points in black, with simulated data points in grey. In the case of the Gipps and RPA 
models, there exists a steady-state interpretation of each model, displayed as white lines.  
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 (a) Gaxis-Herman-Rothery model. (b) Gipps model. 

   
 (c) Intelligent driver model. (d) Rakha-Pasumarthy-Adjerid model. 
FIGURE 5 Driver 316 interaction diagram showing spacing vs. speed for the (a) GHR, (b) 
Gipps, (c) IDM, and (d) RPA models. 
 

As a qualitative measure it is seen that the GHR and Intelligent Driver models are not able to 
replicate the car-following behavior in the naturalistic dataset, with simulated speed vs. spacing 
relationships significantly different from the breadth of the observed behavior. On the other 
hand, the Gipps and RPA models both appear to produce variability that is less than that 
observed in the field data. The RPA model appears to capture the steady-state of deceleration 
behavior considerably well (congested data to the left of the steady-state model). To further 
examine the qualitative information, FIGURE 6 displays sample trajectory data. 
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 (a) Time-speed diagram, event 21958.09 (b) Time-spacing diagram, event 21958.09 

 
 (c) Speed-time diagram, event 22626.08 (d) Spacing-time diagram, event 22626.08 
FIGURE 6 Sample car-following events; event 21958.09 (a) time-speed diagram and (b) 
time-spacing diagram, and event 22626.08 (c) time-speed diagram and (d) time-spacing 
diagram. 
 

Sampling two individual events from driver 316, it can be seen that the trajectory data for the 
various models analyzed herein qualitatively supports the observations made from the 
fundamental diagram view of the simulated results. The GHR and Intelligent Driver models have 
fluctuations in them that are far in excess of those from the observed driver, while the trajectories 
simulated by the Gipps and RPA models have fewer and smaller fluctuations than what is seen 
from the observed driver behavior. In general the RPA model mimics the observed driver 
behavior very well. 
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CONCLUSIONS AND RECOMMENDATIONS 
The 100-Car Study database used herein includes 20,000,000 minutes worth of data, recorded at 
a frequency of 10 Hz (every 0.1 seconds), distributed across 108 drivers. Due to current 
limitations in computing power, it proved infeasible to perform analysis on the database in its 
entirety. A process was developed to identify car-following events along a stretch of highway 
traveled by multiple drivers. By examining the location data recorded by GPS in a GIS 
application, the Dulles Airport Access Road was observed to be a regular commuting route for 
15 of the test drivers. Selecting only the data along this roadway generated by the drivers during 
their commute reduced the data to 30,000 minutes, and identifying incomplete data for various 
drivers further reduced the data to 16,000 minutes. Final data validation resulted in 
approximately 1,000 minutes of data, representing 2,200 individual car-following events 
experienced by eight drivers. If the percentage of valid data extracted in this study is indicative 
of the overall database, it follows that there is approximately 60,000 minutes of valid car-
following behavior stored in the 100-Car Study database which has yet to be processed and 
analyzed. 

Post processing of naturalistic data is an important phase in the data reduction process. The 
radar equipment used for the 100-Car Study tracked seven objects simultaneously; however, 
because of significant errors in the object tracking, all car-following events had to be manually 
verified using recorded video data. The presence of both onboard diagnostic and GPS speed data 
provided an opportunity to independently validate the two data sources. The analysis 
demonstrated that significant errors were observed in both sources of speed measurements, 
resulting in a significant loss in useable data. Identifying speed measurement errors was 
simplified by computing the acceleration at each time-step and ensuring they were within the 
physical limitations of the vehicle. The examination of acceleration also demonstrated that the 
onboard diagnostic values were updated less frequently than the values were reported, requiring 
interpolation of the data. 

Of the four car-following models calibrated against the data, the Rakha-Pasumarthy-Adjerid 
(RPA) model performed best, followed by the Gipps model. Both the RPA and Gipps models 
performed significantly better than either the Gaxis-Herman-Rothery (GHR) model or the 
Intelligent Driver model (IDM). Based on fundamental diagram data the RPA and Gipps models 
display less variability in behavior in comparison to the observed data, but provide a 
significantly better match to the data when compared to the GHR or IDM models. In examining 
the qualitative results of the vehicle trajectory data, looking at the variation in speed and spacing 
over time, the paths simulated by the GHR and IDM models are seen to fluctuate significantly 
compared to the observed behavior, possibly an indication of an over-sensitive simulated driver; 
the RPA and Gipps models appear to maintain a close relationship with the observed behavior, 
with perhaps less variability in behavior than that of the observed driver. 

The authors herein recommend that future analysis with naturalistic driving data be 
performed using the RPA model, due to its unique ability to incorporate the specific vehicle 
dynamics information that are available in the dataset. Though the processing of data from a 
naturalistic driving study can be costly, the unique combination of specific driver information, 
coupled with vast amounts of recorded data, can potentially shed light on a number of current 
topics of research in car-following behavior. The psychological underpinnings of driver 
behavior, questions of driver heterogeneity, the effects of hysteresis in traffic flow, and the 
relationship between roadway types and driver behavior are all areas of further research using 
this data. 
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ABSTRACT 
The research presented in this paper analyzes the simplified behavioral vehicle longitudinal 
motion model, currently implemented in the INTEGRATION software, known as the Rakha-
Pasumarthy-Adjerid (RPA) model. This model utilizes a steady-state formulation along with two 
constraints, namely: acceleration and collision avoidance. An analysis of the model using the 
naturalistic driving data identified a deficiency in the model formulation, in that it predicts more 
conservative driving behavior compared to naturalistic driving. Much of the error in simulated 
car-following behavior occurs when a car-following event is initiated. As a vehicle enters the 
lane in front of a subject vehicle, the spacing between the two vehicles is often much shorter than 
is desired; the observed behavior is that, rather than the following vehicle decelerating 
aggressively, the following vehicle coasts until the desired headway/spacing is achieved. 
Consequently, the model is enhanced to reflect this empirically observed behavior. Finally, a 
quantitative and qualitative evaluation of the original and proposed model formulations 
demonstrates that the proposed modification significantly decreases the modeling error and 
produces car-following behavior that is consistent with empirically observed driver behavior. 

INTRODUCTION 
There are many explanations of the importance of car-following models in microscopic traffic-
simulation in the literature, with an informative and succinct example being that of Panwai and 
Dia from 2005 [1], who explain that traffic-simulation tools provide the ability to evaluate and 
control different scenarios in an environment that does not disrupt real-world traffic conditions. 

Each car-following model predicts the time-space trajectory of a following vehicle when 
provided the time-space trajectory of a leading vehicle, along with the original location and 
velocity of the following vehicle. The parameters of each model are calibrated such that the 
resulting simulated behavior matches the observed behavior as closely as possible. To calibrate 
these parameters it is necessary to define limiting bounds for the parameter values, define an 
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error function, select an optimization methodology to minimize the objective function, and 
compare simulated to observed vehicle trajectories. 

The data used to validate car-following models in the past has primarily come from test 
tracks, simulators, or loop detectors. These studies either have driver-specific information and 
bias from lack of real-world driving situations, or accurate real-world driving data from 
anonymous drivers. Only recently has naturalistic driving data become available as an analysis 
data source [2]. 

The large size of the database generated by a naturalistic driving study requires data 
reduction to be conducted using a carefully planned procedure. In the case of the Hundred Car 
Study, the initial dataset includes 108 individual drivers, with nearly 337,000 hours of data 
collected across 207,000 trips, which results in more than 12 billion database observations using 
a sampling frequency of 0.1 seconds. The data analyzed herein is identified using a geographic 
information system (GIS) application to visually select specific routes and drivers, exporting 
pertinent data to define trips of interest. Data validation is conducted on the selected data by 
examining outlier information. Some post-processing is necessary in cases where information is 
updated less often than is sampled. 

Naturalistic data is particularly useful for car-following models which employ vehicle 
dynamics constraints, such as the Rakha-Pasumarty-Adjerid (RPA) model, examined herein. The 
vehicle dynamics constraints are based directly on the characteristics of the vehicle, which are 
included as part of a naturalistic database. 

DATASET 
The data used herein represents a subset of the total naturalistic driving database generated by 
the Hundred Car Study project conducted by the Virginia Tech Transportation Institute. The 
complete database includes 108 individual drivers, with 337,000 hours of data collected during 
207,000 trips. The car-following event data used herein was recorded along a 14 km section of 
the Dulles Airport Access Road, in order to maintain facility homogeneity. Visualization is 
presented with the fundamental interaction diagram, as shown in FIGURE 1. 

   
 (a) Flow vs. speed (b) Density vs. speed 
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 (c) Spacing vs. speed (d) Density vs. flow 
FIGURE 1 Combined fundamental diagram for car-following event data; displaying (a) 
flow vs. speed, (b) density vs. speed, (c) spacing vs. speed, and (d) density vs. flow. 

The dataset used includes 1,732 car-following events, totaling 789 minutes, representing 
eight individual drivers. The data from the eight drivers is aggregated into four views of the 
fundamental diagram, with grayscale used to indicate steady-state conditions separately from 
acceleration and deceleration regimes. The darkness of the data points indicates the magnitude of 
acceleration, with near-black points indicating high acceleration levels, near-white points 
indicating high deceleration levels, and grey points indicating steady-state travel. 

THE RAKHA-PASUMARTHY-ADJERID CAR-FOLLOWING MODEL 
The Rakha-Pasumarthy-Adjerid (RPA) model is a simplified behavioral vehicle longitudinal 
motion model, currently incorporated in the INTEGRATION traffic simulation software. This 
model is comprised of three components, which respectively define steady-state traffic stream 
behavior, provide a collision avoidance component, and limit the simulated acceleration based on 
vehicle dynamics. Taking the minimum value of the three components yields the simulated 
velocity for a given time-step. It should be noted that the addition of the vehicle dynamics 
constraint reverts the model from a first-order to a second-order traffic stream model and allows 
for the capture of important phenomenon including the capacity drop associated with departures 
from congested states. 

First-order Steady-state Car-following Model 
The RPA model uses the Van Aerde first-order steady-state model first proposed as a nonlinear, 
single-regime functional form by Van Aerde and Rakha in 1995, as seen in Equation (1) [3]. 

∆𝑥𝑛→𝑛+1(𝑡) = 𝑐1 + 𝑐2
�̇�𝑑−�̇�𝑛+1(𝑡) + 𝑐3 ∙ �̇�𝑛+1(𝑡) (1) 

𝑊ℎ𝑒𝑟𝑒: ∆𝑥𝑛→𝑛+1(𝑡) = the distance between the front of the leading vehicle (n) and 
the front of the following vehicle (n+1) at time (t), in (m). 
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 𝑐1, 𝑐2, 𝑐3 = Parameters used for the Van Aerde steady-state model, in 
(m), (m2/s), and (s), respectively. 

 �̇�𝑑 = velocity desired by driver of vehicle 𝑛 + 1, in (m/s). This 
is also known as the free-flow speed in the literature. 

 �̇�𝑛+1 = velocity of vehicle 𝑛 + 1, in (m/s). 

This formulation provides the space headway of the leader-follower pair at time (t) using the 
velocity of the follower vehicle and four calibration parameters. The first calibration parameter, 
𝑐1, is the fixed distance headway constant in (m), and is analogous to vehicle spacing at jam 
density. The second calibration parameter, 𝑐2, is the first variable headway constant in (m2/s), 
and provides a measure of the driver’s desire to return to his/her desired speed. The third 
calibration parameter, 𝑐3, is the second variable headway constant in (s), analogous to the driver 
sensitivity parameter in the Pipes model. It has been shown that using boundary conditions the 
microscopic parameters can be related to macroscopic parameters, as demonstrated in Equation 
(2) [4]. 

 𝑐1 = ∆𝑥𝑗∙�̇�𝑑
�̇�𝑐2

(2�̇�𝑐 − �̇�𝑑); 𝑐2 = ∆𝑥𝑗∙�̇�𝑑
�̇�𝑐2

(�̇�𝑑 − �̇�𝑐)2; 𝑐3 = �∆𝑥𝑐�̇�𝑐 −
∆𝑥𝑗∙�̇�𝑑
�̇�𝑐2

� (2) 

𝑊ℎ𝑒𝑟𝑒: �̇�𝑐 = velocity at capacity also known as the critical velocity in the literature, in 
(m/s). 

 ∆𝑥𝑐 = vehicle spacing at capacity, in (m). 
 ∆𝑥𝑗 = vehicle spacing at jam density, in (m). 

The application of these constraint conditions and the translation of the Van Aerde model 
into a speed formulation results in the Equation (3). 

�̇�𝑛+1
(1)(𝑡) = −𝑐1+𝑐3∙�̇�𝑑+∆𝑥𝑛→𝑛+1(𝑡)−�[𝑐1−𝑐3∙�̇�𝑑−∆𝑥𝑛→𝑛+1(𝑡)]2−4∙𝑐3[∆𝑥𝑛→𝑛+1(𝑡)∙�̇�𝑑−𝑐1∙�̇�𝑑−𝑐2]

2∙𝑐3
  (3) 

In order to ensure that the speed estimates are realistic the square root term should be positive. 
This is achieved if the model parameters satisfy ∆𝑥𝑐  ≥ ∆𝑥𝑗 �2 − �̇�𝑐

�̇�𝑑
� [4]. 

Collision Avoidance Model 
The RPA model imposes limitations on the steady-state Van Aerde model to ensure collisions do 
not occur under non-steady-state conditions (e.g. a vehicle is approaching a slower vehicle ahead 
of it) and to account for vehicle dynamics constraints, as demonstrated by Park et al. [5]. The 
collision avoidance component is shown in Equation (4). 

�̇�𝑛+1
(2)(𝑡) = �[�̇�𝑛(𝑡)]2 + 2 ∙ �∆𝑥𝑛→𝑛+1(𝑡) − ∆𝑥𝑗�  (4) 

Equation (4) is based on a derivation of the maximum distance a vehicle can travel to 
decelerate from its initial speed to the speed of the leading vehicle without colliding with it, 
maintaining the minimum jam density spacing behind the lead vehicle when it comes to a 
complete stop. This condition only applies when the following vehicle is traveling at a speed 
higher than the speed of the lead vehicle. Within the INTEGRATION software, microscopic 
traffic simulation employs the collision avoidance limitation when the time headway between the 
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two vehicles is less than 50 seconds. The limited application of the constraint ensures that a 
following vehicle will not adjust its behavior based on leading vehicles that are beyond the 
influence zone. 

Vehicle Dynamics Model 
A point of contention with state-of-the-practice car-following models is that realistic vehicle 
accelerations are not always maintained. The resistive forces acting on a vehicle’s forward 
motion include air resistance, grade resistance, and rolling resistance. A vehicle is able to 
accelerate based on the creation of engine tractive force that exceeds the combined effect of the 
resistance forces. A detailed explanation of the application of the vehicle dynamics model is 
beyond the scope of this study, and is found in an earlier publication by Rakha et al. [6]. The 
maximum feasible velocity at time (t) is an expression of the previous time-step’s velocity and 
the maximum feasible acceleration produced by the vehicle, as seen in Equation (5). 

�̇�𝑛+1
(3)(𝑡) = �̇�𝑛+1(𝑡 − ∆𝑡) + ∆𝑡 ∙ 𝐹𝑛+1(𝑡−∆𝑡)−𝑅𝑛+1(𝑡−∆𝑡)

𝑚𝑎𝑠𝑠𝑛+1
  (5) 

𝑊ℎ𝑒𝑟𝑒: 𝐹𝑛+1(𝑡 − ∆𝑡) = 𝑚𝑖𝑛 �3,600 ∗ 𝜂 ∗ 𝛾∗𝑃
�̇�𝑛+1(𝑡−∆𝑡) , 9.8066 ∗ 𝑀𝑡𝑎 ∗ 𝜇� 

Given that: 𝐹𝑛+1 = resultant force (N) 
 𝜂 = driveline efficiency (unitless), taken as 0.7 herein 
 𝛾 = vehicle throttle level ranging from 0.0 to 1.0 (unitless), 

taken from the maximum measured percentage throttle 
depression for each driver herein 

 𝑃 = vehicle power (kW) 
 𝑀𝑡𝑎 = percentage mass of the vehicle on the tractive axle 

(unitless), taken to be 55% of total vehicle mass 
 𝜇 = coefficient of roadway adhesion (unitless), taken as 0.6 

herein 
And: 𝑅𝑛+1(𝑡 − ∆𝑡) = 0.047285 ∗ 𝐶𝑑 ∗ 𝐴𝑓 ∗ �̇�𝑛+1(𝑡 − ∆𝑡)2 + 9.8066 ∗

𝑚𝑎𝑠𝑠𝑛+1 ∗ 𝐶𝑟[𝑐𝑟2 ∗ �̇�𝑛+1(𝑡 − ∆𝑡) + 𝑐𝑟3]  
Given that: 𝑅𝑛+1 = total resistive force (N) 

 𝐶𝑑 = drag coefficient (unitless), vehicle specific. 
 𝐴𝑓 = vehicle frontal area (m2), vehicle specific. 
 𝑚𝑎𝑠𝑠𝑛+1 = vehicle mass (kg) of vehicle n + 1 
 𝐶𝑟 = rolling coefficient (unitless) 
 𝑐𝑟2, 𝑐𝑟3 = rolling resistance coefficients (unitless) 

The formulation included herein is nearly identical to that of the formulation provided in 
Rakha et al. [6], with the exception of gamma (𝛾) being applied to engine power, where gamma 
is equal to the maximum throttle level observed to be used by a given driver. 

PARAMETER CALIBRATION 
Car-following models predict the trajectory of a subject following another lead vehicle when the 
trajectory of a lead vehicle and the original location and velocity of the following vehicle (also 
known as the initial conditions) are provided. The parameters of each model are calibrated such 
that the resulting simulated behavior matches the observed behavior as closely as possible. In 
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calibrating the model parameters it is necessary to generate observed and simulated vehicle 
trajectories, set limiting bounds for the parameter values, define an error function, and select an 
optimization method to minimize the error between the estimated and observed behavior. 

Discrete Time Generation of Vehicle Trajectories 
The RPA methodology generates the anticipated velocity of the following vehicle in a given 
time-step using the estimated acceleration, �̈�𝑛+1(𝑡). The forward Euler method is used to 
estimate the velocity, by way of Equations (6) and (7). 

𝑥𝑛+1(𝑡) = 𝑥𝑛+1(𝑡 − ∆𝑡) + ∆𝑡 ∙ �̇�𝑛+1(𝑡 − ∆𝑡) (6) 
�̈�𝑛+1(𝑡) = ∆𝑡−1 ∙ [�̇�𝑛+1(𝑡 + ∆𝑡) − �̇�𝑛+1(𝑡)] (7) 

Parameter Calibration 
The calibration of the model parameters entailed two calibration efforts, namely: calibrating the 
steady-state and non-steady-state behavior. The calibration of the steady-state behavior was 
conducted using a heuristic automated tool (SPD-CAL), described in the literature [7]. This 
entailed calibrating the desired velocity for each driver.  

The calibration of the non-steady-state behavior entailed calibrating the vehicle deceleration 
and acceleration parameters. Vehicle-specific parameters were extracted from automotive 
websites without the need for calibration. The maximum acceptable deceleration of the subject 
vehicle was extracted from the empirical data. Calibration of the remaining parameters was 
conducted using the evolutionary non-linear solver in Microsoft Excel version 14.0, which 
utilizes a genetic algorithm (GA) to find local minima and a multi-start function to find the 
global minimum. It was necessary to use a heuristic calibration methodology given that the 
feasible region and objective function were non-convex. 

Optimization Function 
The objective function used was a variant of the Root Mean Percent Squared Error (RMPSe) 
considering both the vehicle speed and spacing, as demonstrated in Equation (8). 

𝐹��̇�𝑛+1,𝑠𝑖𝑚(𝑡),∆𝑥𝑛→𝑛+1,𝑠𝑖𝑚(𝑡) � =  

�
∑��̇�𝑛+1,𝑜𝑏𝑠(𝑡)−�̇�𝑛+1,𝑠𝑖𝑚(𝑡)�

2

∑��̇�𝑛+1,𝑜𝑏𝑠(𝑡)�
2 + �

∑�∆𝑥𝑛→𝑛+1,𝑜𝑏𝑠(𝑡)−∆𝑥𝑛→𝑛+1,𝑠𝑖𝑚(𝑡)�
2

∑�∆𝑥𝑛→𝑛+1,𝑜𝑏𝑠(𝑡)�
2   (8) 

PARAMETER CALIBRATION RESULTS 
Initially, a first-order traffic stream model was calibrated using the empirical data. Subsequently, 
a second-order model was calibration by adding the collision avoidance and acceleration 
constraints to the first-order model. It should be noted that a second-order model, unlike a first-
order model, can capture the empirically observed reduction in discharge flow after the onset of 
congestion. 

While all seven drivers from the naturalistic driving database were used for calibration 
purposes, a qualitative visualization of the data and the model fit is provide for single driver. 
Driver 316 was selected for the detailed analysis because the relative goodness of fit for each of 
the models was similar to the aggregate data results.  
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First-Order Model Results 
The results of simulation using the Van Aerde first-order model are shown below, with TABLE 
1 providing quantitative measures, and FIGURE 2 providing qualitative fits to the data. The 
results presented in TABLE 1 demonstrate a high level of variability in the model’s ability to 
simulate different drivers, with the RMSPe value for driver 350 over six times that for driver 
363, at 0.00105 and 0.00017, respectively. This could be attributed to the lower number of 
observations for driver 350. 

The aggregate results entail the following parameters: a jam density (kj) of 169 veh/km, 
resulting in a vehicle spacing at jam density of 5.9 meters; a flow-at-capacity (qc) of 0.662 
vehicles per second per lane, approximately equal to 2,400 vehicles per hour per lane; a speed-at-
capacity of 22.83 m/s, around 82 km/h; and a desired speed or free-flow of 28.31 m/s, 
approximately equal to 102 km/h. These parameter values appear to be very reasonable. 

TABLE 1 Results for the Van Aerde model 
Parameter D124 D304 D316 D350 D358 D363 D462 Aggregate 
𝒌𝒋 a (veh/m) 0.149 0.154 0.124 0.138 0.161 0.150 0.131 0.169 
𝒒𝒄 a (veh/s) 0.948 1.000 0.523 0.611 0.514 0.975 1.000 0.662 
�̇�𝒄 a (m/s) 23.56 16.67 22.28 22.31 19.14 19.06 22.22 22.83 
�̇�𝒅 a (m/s) 29.14 31.94 26.81 26.06 32.22 31.94 31.94 28.31 
No. Obs. 47,623 41,819 114,211 39,625 110,938 105,573 14,645 474,434 
RMSPe 0.00073 0.00037 0.00036 0.00105 0.00030 0.00017 0.00052 0.00018 

a denotes values optimized using SPD-CAL  
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 (a) Flow vs. speed. (b) Density vs. speed. 

   
 (c) Spacing vs. speed. (d) Density vs. flow. 
FIGURE 2 Driver 316 combined interaction diagram results for car-following simulation 
using Van Aerde model; displaying (a) flow vs. speed, (b) density vs. speed, (c) spacing vs. 
speed, and (d) density vs. flow. 

Qualitatively, it is seen in FIGURE 2 that the steady-state Van Aerde model accurately 
captures the underlying average driver behavior, but fails to capture the variability that is seen in 
the driver behavior. Furthermore the model is unable to capture the inverted lambda shape 
associated with the speed-density data. This is because first-order models are unable to capture 
the capacity drop associated with discharging from congestion. It should be noted that it is 
possible to build in variability to the four calibrated parameters, but the behavior itself is 
influenced by additional factors outside of the scope of a first-order model. In the study herein 
variability in parameter values between trips for a given driver is inappropriate, as each 
individual trip may be biased in one direction or the other. Calibrating parameter values for 
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individual car-following events was explored, but found to yield inconsistent results due to the 
small dataset represented by each event. 

RPA Second-order Model Results 
The original formulation of the RPA model addresses some of the disparity seen between the 
simulated Van Aerde steady-state model and the observed behavior, by imposing a collision 
avoidance constraint and a vehicle dynamics constraint. The results of simulation for the RPA 
model are shown below, with TABLE 2 providing quantitative measures, and FIGURE 3 
providing qualitative measures. Similar to the first-order model results, a high level of variability 
can be seen in the model’s ability to simulate the driving behavior of each individual driver. 
Although the collision avoidance and vehicle dynamics constraints provide logical restrictions to 
the steady-state behavior predicted by the Van Aerde model alone, the measure of error is seen to 
increase slightly for both the individual drivers and the aggregate results. An argument could be 
made based on these quantitative results that the RPA second-order model should not be used, 
and instead the formulation using only the steady-state Van Aerde model is better, but it is 
necessary to analyze the qualitative results to determine if this is the case. 

TABLE 2 Results for the RPA model 
Parameter D124 D304 D316 D350 D358 D363 D462 Aggregate 

𝒌𝒋 a 0.149 0.154 0.124 0.138 0.161 0.150 0.131 0.169 
𝒒𝒄 a 0.948 1.000 0.523 0.611 0.514 0.975 1.000 0.662 
�̇�𝒄 a 23.56 16.67 22.28 22.31 19.14 19.06 22.22 22.83 
�̇�𝒅 a 29.14 31.94 26.81 26.06 32.22 31.94 31.94 28.31 

�̈�𝒅−𝒎𝒊𝒏 b -4.630 -2.778 -3.472 -5.556 -5.556 -4.861 -2.451 -4.481 
𝜸 b 0.631 0.600 0.710 0.537 0.576 0.529 0.639 0.764 

V
eh

ic
le

 𝑷 b 90 90 90 90 145 145 119 90 
𝒎𝒂𝒔𝒔 b 1190 1090 1090 1090 1375 1375 1900 1190 
𝑪𝒅 b 0.36 0.40 0.40 0.40 0.40 0.40 0.50 0.36 
𝑨𝒇 b 2.06 2.00 2.00 2.00 2.18 2.18 2.94 2.06 

No. Obs. 47,623 41,819 114,211 39,625 110,938 105,573 14,645 474,434 
RMSPe 0.00086 0.00037 0.00044 0.00118 0.00034 0.00019 0.00087 0.00021 

a denotes values optimized using SPD-CAL 
b denotes values observed from dataset 

Noteworthy is that in the case of the RPA model the Van Aerde model parameters were held 
constant. These parameters included the jam density, the flow-at-capacity, the speed-at-capacity, 
and the desired speed or free-flow speed. These parameters are calibrated using steady-state 
observations only, as defined by accelerations ranging between plus and minus 0.5 m/s2. The 
desired minimum acceleration and maximum throttle level (𝛄) were obtained directly from the 
empirical data. The vehicle characteristics were obtained from manufacturer information based 
on the vehicle make, model, and year. 

Qualitatively, as demonstrated in FIGURE 3, the RPA model provides better coverage of the 
observed driver behavior when compared to the first-order Van Aerde model (shown in FIGURE 
2). Specifically, the average driver behavior defined by the steady-state formulation remains 
intact, while the collision avoidance constraint imposes departures from the steady-state behavior 
to maintain a safety buffer, and the acceleration constraints are observed to delay the return to 
the steady-state behavior when a vehicle accelerates. The breadth of driver behavior appears to 
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reflect the more conservative driving conditions; however the RPA model does not capture the 
more aggressive driving behavior adequately. 

   
 (a) Flow vs. speed. (b) Density vs. speed. 

   
 (c) Spacing vs. speed. (d) Density vs. flow. 
FIGURE 3 Driver 316 combined interaction diagram results for car-following simulation 
using original RPA model; displaying (a) flow vs. speed, (b) density vs. speed, (c) spacing 
vs. speed, and (d) density vs. flow. 

Empirical Observations of Driver Behavior 
The RPA second-order model appears to not capture empirical driver behavior associated with 
traveling at high speeds and very short vehicle spacing, as best seen in part (c) of FIGURES 1, 2, 
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and 3. Some of the individual car-following events exhibiting this behavior were further 
examined to determine if there was a consistent cause for the observed aggressive driving 
behavior. One observation was that a significant number of these events occurred when a vehicle 
in an adjacent lane entered the subject vehicle lane and forced the vehicle spacing to be very 
short. 

The RPA model appeared to deviate from the empirical observations in two other ways: 
converging to a steady-state behavior at low velocities and displaying significantly more 
conservative driving behavior on some individual events. 

The low-velocity convergence to steady-state conditions can be seen in parts (a), (b), and (c) 
of FIGURE 3, which all display speed on the y-axis. As speed decreases from 20 m/s to 10 m/s, 
the driver behavior converges to the steady-state behavior, in contrast to the variability displayed 
in the empirical data. The observed data aggregated across all seven drivers is displayed in 
FIGURE 1, with the darkness of each observation point showing the instantaneous velocity at 
that observation, with darker points indicating high acceleration and lighter points indicating 
high deceleration. By examining parts (a), (b), and (c) of this figure it is seen that the low-
velocity regime yielding steady-state results in the simulation exhibits stark variation in driver 
behavior between acceleration and deceleration. Two methodologies are available the introduce 
hysteresis into the current model formulation, the first could be to calibrate separate values for 
the jam density parameter to be used in accelerating and decelerating behaviors, and the second 
could be to introduce a perception-reaction time-lag into the model. 

The causes of the conservative driving behavior exhibited by the RPA model can be seen in 
the formulation of the additional constraints. Although the RPA model imposes a vehicle 
dynamics limitation on acceleration, it does not impose a similar limitation on deceleration. In a 
case where the observed car-following event begins with a high velocity and a short space 
headway, such as at a speed of 100 km/h and a space headway of 20 m, the simulated model will 
drive the instantaneous deceleration to be around -600 m/s2 to arrive at a velocity of 40 km/h in 
the next time step, in keeping with the steady-state relationship predicted. So long as the lead 
vehicle is traveling at a greater speed than the following vehicle, such as, for example 101 km/h 
in the previous example, the collision avoidance constraint is not activated, and the steady-state 
component governs. In keeping with the ideals of the constraints added to the Van Aerde model 
to make up the RPA model, the authors herein sought to determine a constraint for deceleration 
based on physical mechanisms. 

PROPOSED MODIFICATIONS TO THE MODEL 
Initially, the authors herein postulated that a limitation on deceleration based on the maximum 
braking potential of a vehicle would improve the simulated model results, but it was found that 
this produced far more aggressive braking than was observed in the dataset. The naturalistic 
database included a parameter to record the relative depression of the brake pedal for each time 
step, but a review of the database showed that these values were null, so it was not possible to 
assign each driver a maximum desired braking factor. By conducting parameter calibration to 
minimize the error function, a desired deceleration value was calculated for each driver, to 
govern his/her behavior in aggressive driving situations not being overruled by the collision 
avoidance constraint. The authors found that the drivers desired to decelerate at relatively gentle 
rates, even when inhabiting more aggressive parts of the interaction diagram than was desired. 
Upon further review, it was found that the desired rate of deceleration for each driver was very 
close to the deceleration imparted by the combined resistance forces of the vehicle dynamics 
model, essentially implying that the observed behavior of drivers is to coast, using neither the 
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gas nor the brake pedals, gradually backing off of a lead vehicle when the space headway is 
smaller than it is wished to be for a given speed. Subsequently, the authors herein propose an 
additional constraint to the existing RPA model for use with deceleration behavior not governed 
by the collision avoidance constraint. We recommend using the vehicle dynamics constraint with 
the throttle, herein defined as gamma (𝛄), set to zero, which allows the simulated vehicle to coast 
out of aggressive driving conditions until it reaches its desired steady-state behavior. 

At this time, the jam density parameter is not being modeled with separate values for the case 
of acceleration and deceleration, despite the indication from the observed data that this may 
improve the accuracy of the simulated results. A trial of this model variation was conducted, and 
while it resulted in an improvement to the qualitative results on the interaction diagram, there 
was no change to the quantitative error measure. In order to introduce hysteresis into the 
simulation results, a perception-reaction component has been added to the model, basing 
simulated following driver behavior on observed leading driver behavior occurring τ seconds in 
the past.  Staying internally consistent with the components of the model, the value of τ is set 
equal to the value of the 𝑐3 parameter calculated for the first-order steady-state model. 

Use of Vehicle Dynamics for Coasting 
Incorporating the proposed condition of vehicle coasting in aggressive driving conditions when 
the collision avoidance constraint is not triggered, the components of the RPA model, being 
represented by Equations (3), (4), and (5) are implemented in the proposed modified formulation 
as shown in Equation (9). 

�̇�𝑛+1(𝑡) = max �min��̇�𝑛+1
(2), �̇�𝑛+1

(3)(𝛾 = 0)� , min��̇�𝑛+1
(1), �̇�𝑛+1

(2), �̇�𝑛+1
(3)��  (9) 

Results of the Modified RPA Model 
The modified formulation of the RPA model addresses most of the disparity seen between the 
simulated Van Aerde steady-state model behavior and the observed behavior, qualitatively 
covering the aggressive driving conditions observed in the database that were not being 
incorporated by either the Van Aerde model or the existing formulation of the RPA model. The 
results of simulation for the modified RPA model are shown below, with TABLE 3 providing 
quantitative measures, and FIGURE 4 providing qualitative measures. The results of the error 
measure are seen to improve with the modifications to the RPA model, with further comparative 
analysis offered below. The qualitative results show improvements in keeping with the benefits 
seen in the quantitative results. 

This modified model is an expansion of the regimes of behavior from the previous 
formulation using the same set of equations, and not an alternative way to calibrate the behavior. 
As such, the modified formulation of the driver behavior model uses the same set of calibrated 
parameters as the original formulation. 
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TABLE 3 Results for the modified Rakha-Pasumarthy-Adjerid model 
Parameter D124 D304 D316 D350 D358 D363 D462 Aggregate 

𝒌𝒋 a 0.149 0.154 0.124 0.138 0.161 0.150 0.131 0.169 
𝒒𝒄 a 0.948 1.000 0.523 0.611 0.514 0.975 1.000 0.662 
�̇�𝒄 a 23.56 16.67 22.28 22.31 19.14 19.06 22.22 22.83 
�̇�𝒅 a 29.14 31.94 26.81 26.06 32.22 31.94 31.94 28.31 
τ a 0.7 0.3 1.5 1.3 1.4 0.4 0.5 1.2 

�̈�𝒅−𝒎𝒊𝒏 b -4.630 -2.778 -3.472 -5.556 -5.556 -4.861 -2.451 -4.481 
𝜸 b 0.631 0.600 0.710 0.537 0.576 0.529 0.639 0.764 

V
eh

ic
le

 𝑷 b 90 90 90 90 145 145 119 90 
𝒎𝒂𝒔𝒔 b 1190 1090 1090 1090 1375 1375 1900 1190 
𝑪𝒅 b 0.36 0.40 0.40 0.40 0.40 0.40 0.50 0.36 
𝑨𝒇 b 2.06 2.00 2.00 2.00 2.18 2.18 2.94 2.06 

No. Obs. 46,495 41,511 109,563 36,397 105,179 104,751 13,981 455,382 
RMSPe 0.00065 0.00032 0.00029 0.00088 0.00029 0.00015 0.00036 0.00015 

a denotes values optimized using SPD-CAL 
b denotes values observed from dataset 

Qualitatively, it is seen in FIGURE 4 that the modified RPA model provides better coverage 
of the observed driver behavior than does either of the previous two versions of the model, 
shown in FIGURE 2 and FIGURE 3. Specifically, the centroid behavior defined by the steady-
state formulation remains in the same location, while the collision avoidance constraints impose 
departures from this curve to maintain safety, the acceleration constraints slow the return to the 
steady-state behavior once the collision avoidance condition has been met, the coasting 
constraint allows for gradual deceleration when traveling in an aggressive traffic stream, and 
finally the perception-reaction time delay introduces hysteresis at low velocities. Additionally, in 
the case of the specific driver displayed in the interaction diagram the model appears to miss a 
segment of less aggressive driving behavior in the range of twenty kilometers per hour to 60 
kilometers per hour. This may or may not be due to factors impacting the driver’s behavior 
which are not observed herein, such as traffic behavior upstream of the driver, inclement 
weather, glare, etc. 
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 (a) Flow vs. speed. (b) Density vs. speed. 

   
 (c) Spacing vs. speed. (d) Density vs. flow. 
FIGURE 4 Driver 316 combined interaction diagram results for car-following simulation 
using modified RPA model; displaying (a) flow vs. speed, (b) density vs. speed, (c) spacing 
vs. speed, and (d) density vs. flow. 
COMPARATIVE ANALYSIS FOR MODEL FORMULATIONS 
The comparative error results of simulation for the Van Aerde model, the original RPA model, 
and the modified RPA model are shown in TABLE 4. Because of the amount of overlap between 
the three models, qualitative comparison is provided through the use of sample car-following 
events, with time vs. speed and time vs. spacing charts provided for two individual events in 
FIGURE 5. The results of the error measure is seen to decrease universally with the 
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modifications to the model, but for the individual drivers and in the aggregate results; the 
modified RPA model has an RMSPe which is 20% lower than the Van Aerde model, and 40% 
lower than the original formulation of the RPA model. 

TABLE 4 Comparative error results 
Model D124 D304 D316 D350 D358 D363 D462 Aggregate 

Van Aerde 0.00073 0.00037 0.00036 0.00105 0.00030 0.00017 0.00052 0.00018 
RPA 0.00086 0.00037 0.00044 0.00118 0.00034 0.00019 0.00087 0.00021 

RPA-modified 0.00065 0.00032 0.00029 0.00088 0.00029 0.00015 0.00036 0.00015 

   
 (a) Time vs. speed, event 21958.09. (b) Time vs. spacing, event 21958.09. 

   
 (c) Speed vs. velocity diff., event 21958.09. (d) Time vs. speed, event 90700.01. 
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 (e) Time vs. spacing, event 90700.01. (f) Speed vs. velocity diff., event 90700.01. 

FIGURE 5 Sample car-following events: event 21958.09 (a) time-speed diagram, (b) time-
spacing diagram, and (c) spacing-velocity difference diagram; event 90700.01 (d) time-
speed diagram, (e) time-spacing diagram, and (f) spacing-velocity difference diagram. 

The individual car-following events displayed in FIGURE 5 serve to highlight both the 
logical errors found from the original formulation of the RPA model, and show how a specific 
dataset can lead to an oversight. Naturalistic driving data includes vast stores of data from many 
drivers as they go about their regular driving activities, using vehicles which have been equipped 
to record their travel data without interfering with regular operations. If the data used in this 
current study had included only test-track data, or if it had included only data observed along 
arterials, it is possible that every car-following event would have begun at a very low speed, such 
as is seen in parts (a), (b), and (c) of FIGURE 5; in this case the modified formulation of the 
RPA model is seen qualitatively to work as well as either the original formulation of the RPA 
model or the Van Aerde model. It is only because the naturalistic data used for analysis herein 
includes travel on a multi-lane highway that car-following events can begin with lead vehicles 
entering the lane in front of an instrumented vehicle at high velocity. The second example car-
following event, shown in parts (d), (e), and (f) of FIGURE 5, displays the improvement 
provided by the modified RPA model, in comparison to the Van Aerde model and original 
formulation of the RPA model, specifically in the case of car-following events beginning at high-
speed and high-density. The instantaneous deceleration discussed previously is clearly seen here, 
along with the resulting jump in spacing between the lead and follower vehicle for the first 
segment of the event. Of interest, the error appears to be self-regulating, as the spacing of the 
follower vehicle for all three variations of the model formulation are consistent after the initial 
thirty seconds of the event. 

Speed-spacing Area for Observed Data and Simulated Data 
In an effort to measure both the quantitative and qualitative dispersion of the observed and 
simulated data on the interaction diagram, a methodology was developed to look at area 
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coverage in a true/false sense between the observed driver behavior and the simulated driver 
behavior. An initial effort was made to perform analysis using probability distribution functions, 
but it was found that there was either too much variability, or too little data points for central 
tendencies and distribution shapes to be identified. 

Using the spacing versus speed charts from the interaction diagram, as seen in part (c) of 
FIGURES 1, 2, 3, and 4, a procedure was developed to identify the breadth of the data without 
including outlier information, for comparison purposes. Data points were first separated into bins 
based on velocity, with a bin size of five kilometers per hour. With the points defined for a given 
speed bin, the 5th and 95th percentile values were calculated. The shape of the distributed data 
was plotted using a Computer Aided Drafting program, with calculations conducted regarding 
the area of overlap between the observed data and the simulated results. 

The results of the dispersion analysis are shown quantitatively in TABLE 5, and qualitatively 
in FIGURE 6. It was found that the Van Aerde model coverage included 7 percent of the 
observed dataset, the true-true result; with 19 percent of the simulated data appearing outside of 
the area of observed data, a false-true result. In covering the observed data, the original RPA 
formulation improved the true-true result to 40 percent, with the modified model improving the 
result to 71 percent. The data point distribution as generated by either version of the RPA model 
is about equal, with a false-true result of 40 percent and 39 percent for the original and modified 
models, respectively. 

In general, the qualitative data distribution shown in FIGURE 6 sums up the information 
previously discussed; the Van Aerde model generates a thin stream of simulated data along the 
centroid of the observed data, the original RPA model generates data that is equal to or more 
conservative than the steady-state behavior, and the modified RPA model includes more 
aggressive driving behavior as a driver chooses to coast from more aggressive to steady-state 
driving conditions. 

TABLE 5 Coverage of the middle 90th percentile of simulated and observed data 
Speed-Spacing Area 

(m-km/hr) 
5th to 95th percentile 

D124 D304 D316 D350 D358 D363 D462 Aggregate 

Observed Area 4,575 4,076 3,846 3,945 3,762 3,774 1,888 5,985 

V
an

 
A

er
de

 Simulated Area 135 769 786 2,086 538 557 387 1,519 
True-True 3% 11% 13% 9% 9% 10% 19% 7% 
False-True 0% 7% 7% 44% 5% 5% 2% 19% 

R
PA

 Simulated Area 3,345 3,704 2,162 5,083 1,866 2,590 2,489 4,681 
True-True 58% 62% 39% 50% 34% 53% 46% 39% 
False-True 15% 29% 17% 79% 16% 16% 86% 39% 

R
PA

-
m

od
 Simulated Area 5,220 4,953 2,656 5,108 2,914 3,044 1,678 6,138 

True-True 78% 83% 61% 72% 67% 68% 66% 67% 
False-True 36% 38% 9% 57% 10% 13% 23% 35% 
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 (a) Observed and Van Aerde results. (b) RPA and RPA-modified results. 
 

FIGURE 6 Coverage of the middle 90th percentile of simulated and observed data, 
displaying (a) observed and Van Aerde data, and (b) RPA and the modified RPA results. 
CONCLUSIONS 
This paper analyzed the simplified behavioral vehicle longitudinal motion model, currently 
integrated in the INTEGRATION software, which has been named the Rakha-Pasumarthy-
Adjerid model in the literature. The current model utilizes a steady-state model along with two 
constraints, acceleration and collision avoidance. A naturalistic driving database, the Hundred 
Car Study, was used to generate 1,732 car following events totaling 789 minutes worth of data 
across seven drivers, along the same stretch of multi-lane highway. 

Based on analysis of the current model using this unique data set, a deficiency was identified 
in the current formulation of the model in that it predicts more conservative driving behavior 
than is observed. Although the simulated data produced by the existing RPA model provides 
qualitative results that improve upon the steady-state Van Aerde model, there is increased error 
in the quantitative results. Further comparative review indicated that much of the error occurs 
when a car-following event is initiated, specifically when an event begins while both vehicles are 
traveling at high speeds. As a leading vehicle enters the travel-way in front of a given probe 
vehicle, the spacing between the two vehicles is often much shorter than is desired when 
traveling at high speed. The existing models do not constrain for deceleration behavior, and the 
simulated behavior was found to match the desired speed based on the observed space headway. 
This was observed to result in near-instantaneous deceleration. 

When an overly aggressive speed versus space headway is imposed on a following vehicle at 
the beginning of a car-following event, the observed behavior is that, rather than decelerating 
swiftly, the following vehicle instead chooses to coast until the desired headway is achieved. A 
modification to the existing model, using the vehicle dynamics equations was proposed to 
incorporate this observed behavior. Quantitative and qualitative analysis comparing the previous 
and the proposed model formulations shows that this modification provides significant benefit to 
the results. 
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The proposed modifications are found to significantly decrease the error against the observed 
behavior in comparison to either of the two previous formulations, reducing error in the 
aggregate case by 20 percent against the Van Aerde model, and by 40 percent against the 
original RPA formulation. Additional qualitative analysis using both time-space and time-speed 
diagrams of individual trips, and using data distribution diagrams, indicates that the proposed 
modifications to the RPA model result in a more realistic simulation of driver behavior. 
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