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ABSTRACT 1 
This project uses the Box-Jenkins time-series technique to model and forecast the traffic flows and then 2 
uses the flow forecasts to predict the origin-destination matrices. First, a detailed analysis was conducted 3 
to investigate the best data correction method.  4 
 5 
Four spatial correction procedures were examined for non-incident related detector data. The first 6 
approach, temporal correction, exploited the inherent temporal trend of historical traffic. The spatial 7 
correction based on linear regression (LR) - a proposed modification of a previous approach - uses the 8 
relationship between the individual detector flow and station flow. The third approach proposed in this 9 
study is also a spatial correction method. A unique feature of the proposed spatial correction procedure 10 
was incorporation of lane use percentage into the correction process through kernel regression (KR). As a 11 
comparison benchmark, the correction method based on lane distribution (LD) developed by previous 12 
researchers was included as the fourth method.  13 
 14 
To comprehensively compare the correction procedures, both systematic evaluation and random-error 15 
evaluation were conducted. After the results of systematic evaluation were analyzed, it was found that 16 
adaption was needed for the KR and LD approaches. Specifically, the individual lane flows provided by 17 
the detectors on particular general purpose lanes produced more accurate estimates. The two correction 18 
procedures (kernel regression and lane distribution) were revised in light of this finding and their station 19 
flow estimates were compared to those of the temporal correction and the LR approach at five error 20 
levels, which was considered as the random-error evaluation.  21 
 22 
After applying the temporal correction method to the data set, the station flow series was modeled using 23 
the Box-Jenkins time-series modeling framework. The station flow series was successfully modeled by an 24 
MA(2) model using the Box-Jenkins time series technique. It enjoys an MAE of 344.53 and MAPE of 25 
7.07%. The limitation is that different models are needed for each station and the model may be different 26 
for a different time period. However, once the model is fitted, it can be used to forecast the traffic hourly 27 
flows, which were subsequently used to predict the origin-destination demands. 28 
 29 
The performance of QueensOD modeling is relatively good, which is evidenced by approximately 10% 30 
MAPE for a majority of links. Generally, the relative errors (MAPE) are around 10% with a few higher 31 
exceptions. This is possibly due to the fact that the QueensOD requires the actual travel time as inputs. 32 
The actual travel times were computed using the BPR function according to observed flows, which could 33 
be a source of error.  34 
  35 
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CHAPTER 1 INTRODUCTION 1 
This chapter outlines the background and motivations for this project. In addition, the problem statement 2 
is also provided to define the boundary of the research effort and highlight the tasks that constitute this 3 
research initiative.  4 
1.1. Background and Motivations 5 
Demand for freeway travel increases as the population grows and economy expands. Congestion results 6 
when traffic demand approaches or exceeds the available capacity of the system. In 2007, congestion, in 7 
terms of wasted time and fuel, cost about $87.2 billion in 439 urban areas, compared to $87.1 billion (in 8 
constant dollars) in 2006 (Schrank and Lomax, 2009). Since traffic volume will continue to grow rapidly, 9 
congestion, usually considered as a metropolitan problem, will become increasingly common in small 10 
cities and even rural areas(FHWA, 2005; Schrank and Lomax, 2009). To relieve congestion, various 11 
measures, such as tolling, congestion pricing, information provision, and high occupancy vehicle 12 
lanes/facilities, are proposed and being implemented throughout the United States. Among these 13 
measures, Intelligent Transportation Systems (ITS) serve as one of the most effective ways to tackle the 14 
congestion problem. For example, a combination of ITS technologies in Detroit, Michigan increased 15 
average vehicle speeds by 5.4 mph, decreased trip times by 4.6 minutes, and reduced commuter delay by 16 
22 percent (FHWA, 2005). ITS plays an important role in improving transportation system efficiency and 17 
traveler convenience (Zhou, 2004).  18 
 19 
The successful implementation and function of ITS architecture require constantly-monitored network 20 
traffic conditions. Based on the traffic conditions, sometimes a number of alternative schemes need to be 21 
evaluated for effective traffic management (Hellinga, 1994). For example, signal timing needs to be 22 
adjusted in correspondence to current traffic conditions. These evaluations usually need dynamic traffic 23 
demand in the form of origin-destination (OD) matrices (Bottom, 2000; Antoniou et al., 2006). Therefore, 24 
OD trip tables are important for these on-line traffic management applications. In addition, reliable 25 
forecasts of traffic demand and subsequently predicted network traffic conditions are critical to provide 26 
route guidance instructions as well as en-route diversion suggestions (Hellinga and Van Aerde, 1998). 27 
The inability of providing high quality OD demand estimates limits the potential for ITS deployments to 28 
alleviate traffic congestion and enhance mobility in urban networks (Zhou, 2004).  29 
 30 
Various measures can be used to obtain OD demands for different application scenarios. For offline 31 
planning purposes, OD trip information can be obtained from direct interviews and/or surveys. 32 
Household, destination and roadside surveys are typically used in transportation planning analysis 33 
(Ortuzar and Willumsen, 1994). The survey method provides valuable samples about the detailed travel 34 
activities of each trip-maker, such as the origin and destination, the mode used and the travel time (Zhou, 35 
2004). However, this method cannot satiate the needs of online applications, which requires dynamic 36 
demand information. Fortunately, due to the emerging traffic surveillance technology, real-time 37 
monitoring of traffic networks is possible and provides reliable data for deriving the OD demands. Traffic 38 
surveillance technologies, based on their functionality, can be categorized into three types, namely point, 39 
point-to-point and area wide (Antoniou et al., 2006). Point sensors include the widely-used loop detectors, 40 
which provide volume, occupancy, and speed measurements (Nihan et al., 2006). Point-to-point sensors, 41 
such as Automatic Vehicle Identification (AVI) systems, make the tracking of vehicles possible. More 42 
importantly, this technology provides direct information regarding OD demands (Cascetta and Marquis, 43 
1993; Antoniou et al., 2006). Area-wide technologies, including airborne sensors, are promising 44 
technologies that are still being developed (Antoniou et al., 2006). The data retrieved from the first two 45 
categories of sensor technology have already been used as source data to estimate OD demands. In 46 
addition to OD estimation, prediction of OD demands is also beneficial within the context of ITS 47 
applications. Detailed discussion of these two problems will be provided in the following sections.  48 
 49 
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1.2. Problem Statement  1 
As mentioned earlier, dynamic OD matrices of an extended period of time are almost impossible to 2 
acquire through direct measurements, interviews or field surveys. But by using traffic measurements such 3 
as traffic counts, turning movement counts, and other data from various sources, one reasonably estimate 4 
these unknown OD matrices. Two distinct but related kinds of problems need to be discussed, namely the 5 
dynamic OD estimation problem and OD prediction problem. Note since for Interstate 66, the object of 6 
this study, only loop detector data is available. From here on, all the data refers to loop detector data 7 
unless specified otherwise.  8 
 9 
The Real-time OD estimation problem is defined as follows. Given link traffic counts for multiple time 10 
intervals 1,2, … ,  and historical OD flows, estimate OD matrices for vehicles departing during each 11 
time interval  until the current time interval (Ashok, 1996). In comparison, the OD prediction problem is 12 
to forecast the number of vehicles departing at future time slices (Ashok, 1996; Camus et al., 1997).  13 
 14 
Since OD matrices are the direct input for traffic assignment problem, another definition of the OD 15 
estimation problem is based on traffic assignment which specifically refers to the procedure that assigns a 16 
certain OD matrix to a specific road network based on given link performance functions (Sheffi, 1985). 17 
By exploitation of traffic assignment, one thus obtains the traffic volumes on each link of the 18 
transportation network to which traffic is assigned. This relationship between OD demand, flow pattern, 19 
and assignment procedure can be expressed by a functional form as follows (Sheffi, 1985; Yang et al., 20 
1992):  21 
 ( )assignx q=  (1.1) 22 
where  is the flow pattern resultant from the assignment procedure applied to OD matrix . The 23 
definition based on traffic assignment states that the OD estimation problem can be defined as the inverse 24 
problem of traffic assignment: find an OD matrix that produces identical flow pattern in the 25 
transportation network (Abrahamsson, 1998). In addition to the observed flow information, sometimes, 26 
prior knowledge of the unknown OD may be obtained from historical data or a sample survey. This prior 27 
information serves as an initial estimate of the true demand and is referred to as the target OD 28 
(Abrahamsson, 1998). Therefore, the information for OD estimation is twofold: observed flow pattern 29 

and prior knowledge of the unknown demand. They can be integrated into a single estimation 30 
framework (Cascetta and Marquis, 1993) as follows.  31 

 

( ) ( )

( )

*
1 1 2 2min , ,

. .
0

w f q q w f x x
s t
q
x assign q

+

³
=

 (1.2) 32 

where  represents the OD demand previously known and represents the estimated flow and function 33 
,and represents error measurement function. A typical form for  is mainly minimum-information 34 

type while  typically takes Euclidean distance format (Abrahamsson, 1998).  35 
 36 
Note that though the definition of OD estimation and prediction seems straightforward, the OD estimation 37 
and prediction problem are not easy in that there are still many complications.  38 
 39 

• Firstly, the measurement errors and unavailability of traffic data for certain links or time slots 40 
always pose challenges to OD estimation and prediction. It is natural that observed traffic counts 41 
may not be available for all the links that constitute the network. Even if the traffic data is 42 
available, known and hidden errors adversely impact the OD estimation and prediction 43 
procedures.  44 

 45 
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• The assignment procedure used greatly impacts the flow pattern obtained. In the uncongested 1 
network case, usually, flow-independent proportional assignment such as all-or-nothing 2 
assignment is assumed (Yang et al., 1992). Though proportional assignment enjoys a 3 
computational advantage (Yang et al., 1992), the assumption of uncongested network does not 4 
always hold especially when disruptions such as incidents and extreme weather occur in the 5 
network.  6 

 7 
• In addition, there are usually a large number of different OD matrices that may give the observed 8 

flow pattern. Hence, the OD matrix with maximum likelihood causing the observed traffic pattern 9 
is desired and subsequently, various techniques and methods have been proposed to deal with the 10 
selection of the “best” OD estimate.  11 

 12 
• Finally, since loop detector data is the source for OD estimation and prediction, the real OD 13 

demands are unknown. Hence, the prediction method used should be capable of providing 14 
reliable estimates without knowing real OD matrices.  15 

1.3. Objectives of the Project 16 
The objectives of this project are stated as follows:  17 

• Propose data correction procedures and evaluate their performance using the Interstate 66 (I-66) 18 
loop detector data.  19 

• Model the traffic flow series using the Box-Jenkins time series technique and provide forecasts 20 
for future flows.  21 

• Implement an OD prediction procedure for Interstate 66 using QueensOD and evaluate the 22 
possibility of real-time deployment of this procedure.  23 

 24 
1.4. Methodology of the Project 25 
The following measures are taken to tackle the problems aforementioned and achieve the objectives:   26 

• Develop a data correction procedure to correct the erroneous data and fill missing data.  27 
The choice of assignment principle does not pose a threat to OD estimation for a single freeway 28 
section due to the fact that only one route connects each OD pair. 29 
• Use the QueensOD model for OD estimation. The model adopts the concept of least squares 30 

regression and attempts to minimize the sum of squared error between the observed and estimated 31 
link flows. This model conforms to the Euclidean distance format of function . The QueensOD 32 
model will automatically choose the best OD estimate.  33 

• Construct a procedure that is used to predict future link flows, which then will be used for OD 34 
prediction. In other words, instead of predicting OD demands directly, the future link flows are 35 
predicted and serve as the basis for “OD estimation” for future time intervals.  36 

1.5. Organization of the Report 37 
The project is divided into five chapters. After the introductory Chapter 1, Chapter 2 deals with the data 38 
correction issue by proposing two new data correction procedures and comparing them to a commonly-39 
used procedure. Chapter 3 models the traffic flow series using the Box-Jenkins time series technique and 40 
provides forecasts for future flows. Chapter 4 applies QueensOD to use the predicted flows for OD 41 
prediction. The final chapter provides the concluding remarks. 42 
 43 
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CHAPTER 2 DATA PREPARATION 1 
This chapter deals with the data preparation for OD prediction by addressing the problem of correcting 2 
single station loop detector data.  3 
 4 
2.1. Introduction 5 
As a result of congestion, U.S. urban travelers spent 4.2 billion more hours traveling and purchased an 6 
extra 2.8 billion gallons of fuel than the previous decade, which resulted in a monetary cost of $87.2 7 
billion in 2007 (Hellinga, 1994). To help relieve congestion, Advanced Traveler Information Systems 8 
(ATIS), supported by the national Intelligent Transportation System (ITS) infrastructure, are implemented. 9 
ATIS offers a variety of benefits including decreasing travel time by 4% to 20% or more in severe 10 
congestion (Antoniou et al., 2006). Specifically, ATIS provides route and decision guidance with 11 
sufficient detail about possible alternate routes, travel times and locations in a timely and cost-effective 12 
fashion (Antoniou et al., 2006). To disseminate proper and useful advisory messages, one of the critical 13 
steps is collecting relevant data, which includes data synthesis and data translation (Antoniou et al., 2006). 14 
Moreover, the accuracy and reliability of the collected data greatly impacts the user-benefit of the ATIS 15 
(Abrahamsson, 1998; Bottom, 2000). Travelers may encounter worse conditions if they follow advisory 16 
messages that are based on erroneous data, which fail to reflect the real traffic conditions. The requested 17 
data, among other measurements, include volume and occupancy which can be readily retrieved from 18 
inductive loop detectors, an important data source for ATIS applications (Institute of Transportation 19 
Engineers, 2000). However, it is well known that loop detector data is prone to errors (Peeta and 20 
Anastassopoulos, 2002; Vanajakshi and Rilett, 2004). Therefore, it is essential to efficiently and 21 
effectively detect, diagnose and correct erroneous data for use in ATIS applications, travel time 22 
estimation and prediction, origin-destination demand estimation, and incident detection which rely on 23 
loop detector data streams (Fernandez-Moctezuma et al., 2007).  24 
 25 
Loop detectors are usually installed on each freeway lane and parallel detectors constitute a detector 26 
station. Loop detectors are presence-type detectors, which sense the presence and passage of vehicles over 27 
a short section of roadway (May, 1990). The sensor is activated when a vehicle enters the detection zone 28 
and remains so until the vehicle leaves the detection zone. This activated duration (vehicle occupancy 29 
time) is the time for a vehicle to travel the length of the detection zone plus the vehicle’s length (Daganzo, 30 
1997). Typical measurements obtained from loop detectors are occupancy, volume, and speed at a pre-31 
defined time resolution. Occupancy is a surrogate for density and volume can be easily transformed into 32 
hourly flow (May, 1990). Therefore, loop detector data essentially provide microscopic (time headways 33 
and vehicle speeds) and macroscopic characteristics of traffic flow (May, 1990), which can then be used 34 
to derive travel times for ATIS applications (Antoniou et al., 2006).  35 
 36 
Issues associated with loop detector data are erroneous recordings and missing data, caused by improper 37 
installation, communication malfunction, and/or wire failures (Bikowitz and Ross, 1985). Current data 38 
collection is usually continuous, which makes equipment malfunctions more likely than if occasional 39 
collection techniques were used (Vanajakshi and Rilett, 2004). Continuous data collection leads to large 40 
amounts of data, which makes manual detection and correction techniques impractical. Therefore, 41 
efficient, automated procedures for detecting and correcting errors are needed.  42 
 43 
Error detection and correction algorithms typically use historical data from the same detector, data from 44 
neighboring detectors, or a combination of both. Depending on the data used, a detection and/or 45 
correction procedure can be classified into two general categories: temporal or spatial. "Temporal" refers 46 
to procedures that rely on the historical data of the same detector (e.g. (Peeta and Anastassopoulos, 2002)), 47 
while "spatial" indicates approaches that use data from the detectors within the same station. Some 48 
approaches such as in Smith and Conklin (2009) combine spatial and temporal information. Spatial 49 
correction procedures (e.g. (Chen et al., 2003)) use historical data to derive the relationships between in-50 
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station detectors for subsequent correction, but are categorized as spatial since correction is based on in-1 
station detector data.  2 
 3 
To aid with the selection of correction procedures for non-incident conditions, the performance of four 4 
different correction procedures which belong to the two general categories aforementioned are compared 5 
in a comprehensive manner using field data in the context of a single station. Among the four approaches 6 
are two proposed spatial correction procedures. One uses kernel regression to derive station flows based 7 
on lane use percentages and the other modifies an existing approach (i.e. (Chen et al., 2003)) by using 8 
lane flow to estimate station flow (whereas Chen et al. used one lane’s flow to predict another lane’s 9 
flow). These two new procedures are evaluated along with Smith and Conklin’s (2002) approach and the 10 
time of day historical mean approach.  The comparison is conducted from two aspects, namely systematic 11 
evaluation and random-error evaluation. The systematic evaluation is characterized by a completely 12 
deterministic error configuration while errors are introduced in a stochastic fashion for the random-error 13 
evaluation. The results of the comparison are analyzed to identify the most accurate method(s) to correct a 14 
large dataset and obtain accurate station flow estimates. In addition, recommendations for practical 15 
implementations are drawn from the comparison results.  16 
 17 
The remainder of the paper contains six sections. Section 2 reviews earlier studies about loop detector 18 
data error detection and correction. Section 3 describes the characteristics of the dataset used for the 19 
subsequent comparison study. Section 4 presents the correction methods, followed by the experimental 20 
procedures in the fifth section. The results of the comparison are provided in Section 6. The last section 21 
presents conclusions and future directions.  22 
2.2. Previous Studies of Loop Detector Data Error Correction 23 
Error identification is necessary before any correction measure can be applied. Though this study does not 24 
deal with error detection, the detection methods are discussed for completeness and some studies jointly 25 
address the detection and correction of errors.  26 
 27 
As mentioned earlier, techniques for detection and correction of errors in loop detector data fall into two 28 
general categories, namely temporal and spatial methods. But additional techniques based on checking for 29 
impossible combinations of traffic flow characteristics are also used to detect errors in loop detector data. 30 
Impossible combinations of traffic flow parameters can be identified by volume-to-occupancy or flow-to-31 
occupancy ratios (Jacobson et al., 1990; Cleghorn et al., 1991). Turner (2004) later incorporated speed 32 
into combination checking. Chen et al. (2003) checked for impossible combinations over an entire day, 33 
rather than a smaller time period, and detected implausible time series of traffic measurements. Another 34 
widely-used error checking technique is to compare volumes or flows, occupancies, and speeds with 35 
specific thresholds (Weijermars and Van Berkum, 2006; Payne and Thompson, 2007).  36 
 37 
Temporal detection and correction procedures were implemented by Chen et.al (1987) and many 38 
Intelligent Transportation Systems in Europe (Turner, 2004). Park (2003) constructed a multi-variant 39 
screening methodology to identify outliers of traffic data based on a variant of Mahalanobis distance. 40 
Ishak (1994) developed an algorithm using fuzzy theory that clusters the input space of the parameters 41 
speed, occupancy, and volume into regions of highly concentrated observations based on the normalized 42 
Euclidian distance. Each observation’s level of uncertainty is then measured with one parameter, which is 43 
used for data screening to identify potential errors. Later this work was improved using probability theory 44 
and applied to real-time situations (Bhattacharjee et al., 2001; Alibabai and Mahmassani, 2008). Nihan 45 
(1997) modeled occupancy and flow time series as Autoregressive Moving Average processes (ARMA) 46 
and predicted values in the near future for the same station. Other efforts relying on time-series 47 
techniques include Maier et al. (1998), who applied robust estimation techniques to the time-series of 48 
flow, occupancy and speed measurements to  estimate the corrected measurements. Using a spectral-49 
domain time-series technique, Peeta and Anastassopoulos (2002) developed a Fourier-Transform based 50 
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algorithm that considered traffic characteristics as a time-dependent function and distinguished abnormal 1 
data caused by incidents from those due to detector malfunctions and subsequently corrected erroneous 2 
data. One of the major concerns of temporal detection and correction is that traffic flows could deviate 3 
from historical values due to special circumstances, such as incidents, instead of malfunctioning detectors 4 
(Weijermars and Van Berkum, 2006).  5 
 6 
Spatial detection and correction procedures exploit the relationships between parallel detectors at a given 7 
station and/or upstream and downstream detectors. Kwon et al. (2004) developed an algorithm for 8 
detecting configuration errors based on the assumption that spatially close detectors should show similar 9 
temporal patterns if no major disturbances, such as freeway interchanges, exist in between. Chen et al. 10 
(2003) identified a strong correlation among neighboring loop detector measurements and modeled this 11 
correlation with a series of linear regression models. For a specific detector, a linear regression model was 12 
constructed using the data from this detector and one of its neighbors. The final detector flow estimate 13 
was the median of all the pair-wise estimates. Detection and correction based on the vehicle conservation 14 
principle compare traffic flow measurements between upstream and downstream locations. For example, 15 
Vanajakshi et al. (2004) compared cumulative volumes at each detector location and then corrected 16 
discrepancies using a constrained non-linear optimization procedure. Kikuchi et al. (1999) conducted 17 
another network-wise static data correction study where they applied fuzzy-optimization to adjust the 18 
flows of each link to achieve consistency. One potential deficiency of the spatial correction procedures is 19 
the inability to capture temporal variation of traffic throughout a typical day, which is considered to be 20 
critical in data correction (Abrahamsson, 1998).  21 
 22 
A correction procedure that relied on both temporal and spatial information of the detectors is the one 23 
proposed by Smith and Conklin (2009), which used lane distribution patterns to derive the missing data 24 
values. They reported an average error less than 10% for almost all the test cases. This method will be 25 
discussed in detail in later sections and used in the comparison study.  26 
 27 
From the array of previous approaches, Smith and Conklin’s (2002), the time of day historical mean, and 28 
our modified version of Chen et al’s (2003) approach were selected for comparison, along with our kernel 29 
regression approach, based on ease of implementation and reported correction accuracy.  The variant of 30 
Chen et al.'s (2003) approach constructs a linear relationship between the detector and the station flow 31 
instead of between station-mates. In this study, the adoption of a kernel regression technique is inspired 32 
by its applications in traffic flow prediction (e.g. (Hellinga, 1994; Chen et al., 2008)). The main strength 33 
is its non-parametric nature, which requires no prior assumptions regarding the model structure 34 
(Takezawa, 2006). It is used to model the relationship between lane use percentage and lane flow and 35 
subsequently to correct erroneous flow readings. The details of the models are presented in subsequent 36 
sections.  37 
2.3. Dataset Description  38 
The Virginia Department of Transportation (VDOT) has installed and maintains 91 detectors grouped into 39 
34 stations on eastbound Interstate 66 (I-66E) between Manassas and Falls Church, VA. Provided by 40 
VDOT, detector data and incident records from 2008 were used for this study. From this dataset, the data 41 
for the station near the Lee Jackson Memorial Highway interchange was extracted. This station was 42 
selected because it relates to other ongoing research efforts. The station has five detectors, which occupy 43 
each lane. The detector configuration and the location of the station are illustrated in Figure 1.  44 
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 1 
Figure 1 Station Location and Detector Configuration 2 

Each detector is expected to report speed, occupancy and volume every minute and 1440 records of 3 
station flow should exist for a day if no detector malfunctions occur. The real-time hourly flow is the 4 
volume reading multiplied by 60. The working status of the detectors is recorded by an indicator, which 5 
has three possible values, 0, 1, or 2. A "0" indicates the detector is not functional; a “1” is considered to 6 
be the flag for possible erroneous readings. Only readings from a detector with a status of “2” are 7 
considered correct.  8 
 9 
When the status is 0 or 1, the readings are considered to have known errors (type 1). In addition to these 10 
errors, the detector status is not correctly reported at all times. Type 2 errors may include unreasonably 11 
high flows; considering that the detectors are individual-lane based, the hourly flow obtained from 1-12 
minute data for a freeway lane cannot exceed 5000 vehicle/hr (Payne and Thompson, 2007). Hence, the 13 
detector status is set to 0 for those detectors reporting hourly flows greater than 5000 vehicle/hr for the 14 
corresponding lane. Type 3 errors, missing data, are common. Sometimes, the readings of individual 15 
detectors are missing, and at others no detectors report values for an extended duration, i.e. more than 10 16 
minutes. Station flow is the sum of the individual detector flows, and thus, is correct only when all five 17 
detectors report correct values. In this study, all three error types are converted to missing-data errors 18 
since data retrieved from detectors with a 0 or 1 status are not reliable. Hence, in this study, the data 19 
correction is equivalent to estimation of missing data points and thus the two terms are used 20 
interchangeably. In addition, this conversion simplifies the implementation of the correction procedures.   21 
 22 
To ensure a fair comparison, three datasets were carefully chosen and constructed for the study. The first 23 
dataset is the correction target. The data for Tuesday, April 22, 2008 during 4:00 AM to 10:00 PM was 24 
selected for correction technique comparison, similar to previous studies (Peeta and Anastassopoulos, 25 
2002; Payne and Thompson, 2007; Schrank and Lomax, 2009). The second dataset is the correction base 26 
dataset, which contains the data for the three months prior to the target day (01/23/2008 to 04/20/2008) 27 
with all holidays excluded. The third dataset is a subset of the correction base dataset. It contains the data 28 
for Tuesdays in the correction base dataset. This subset serves as the correction base dataset for temporal 29 
correction that will be described in the next section. Additionally, the erroneous data points and those for 30 
durations in which an incident occurred are also eliminated from the base dataset, as in Peeta and 31 
Anastassopoulos (2002). The elimination of incident-related data is based on incident location and 32 
duration. The relevant incident location is documented as “I-66E at Lee Jackson Memorial” in the 33 



Yin, Murray-Tuite   8 

incident records. The data for the reported duration of the incident was eliminated from the base dataset. 1 
The reasons why April 22, 2008 was chosen are as follows. 2 

• If all detectors had reported correct readings, there would have been 1080 correct station 3 
flows for this time duration. The chosen day is among those with the highest number of 4 
correct station flow readings - 937 out of 1080. These 143 (1080 – 937 = 143) incorrect 5 
station flows were attributed to 259 malfunction detector readings. The detector malfunctions 6 
occurred primarily between 7 and 8 AM and these observations were not part of the 7 
correction procedure evaluation.  8 

• In addition to data quality consideration, the correction base dataset does not involve seasonal 9 
shift, which may lead to a major change in the traffic pattern due to school holidays.  10 

• No incidents occurred on this day for this particular location or within 5 miles upstream or 11 
downstream. The non-incident condition is explicitly required by the correction procedure 12 
proposed by Smith and Conklin (2009).  13 

2.4. Data Correction Procedures 14 
The four data correction procedures are illustrated within the context of the target dataset. First the basic 15 
techniques are presented and then their adaptations for this study are discussed.  16 
2.4.1. Temporal Correction (TC) 17 
The temporal correction (TC) applied for this study is the Time-of-Day (TOD) historical mean (Cascetta 18 
and Marquis, 1993; Daganzo, 1997; Abrahamsson, 1998). Let d denote the number of different days 19 
within the temporal base dataset (i.e. subset of the base dataset - all Tuesdays in the base dataset). The 20 
corrected flow for detector i at time t, ˆ i

t
f is calculated by eq.(2.1):  21 
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where ( )i
t

y j  denotes the flow reading for detector i at time t on day j.  The temporal correction procedure 23 
takes the arithmetic average of the flows at time t of all days available in the base dataset. If a detector is 24 
functional, no correction is needed and the corrected flow ˆ i

t
f  is equal to the reported flow i

tf . The station 25 
flow is the summation of all the estimated detector flows and mathematically expressed as Eq.(2.2).   26 
 ˆˆT C i

t t
i

q f= å  (2.2) 27 

where ˆT C
t

q denotes the corrected station flow (vehicles per hour) for time t using the temporal correction.  28 
 29 
2.4.2. Spatial Correction using Linear Regression (LR) 30 
Unlike Chen et al. (2003) who used relationships between flows of individual detectors, in this study, a 31 
series of linear regression models are constructed to estimate the station flow from functional detectors. 32 
Note that the time span of the correction target dataset is 4:00 AM to 10:00 PM, which includes the HOV-33 
effective duration (5:30 AM to 9:30 AM). To deal with traffic pattern shifts due to the HOV restriction, 34 
two sets of regression models are built. One is for the HOV period and the other is for the regular period. 35 
For notational simplicity, the two sets of regression models are written in a unified format. Specifically, 36 
an estimate of the station flow ˆ i

t
q at time t based on the flow i

t
f of functional detector i at time t is obtained 37 

through the linear regression model expressed in eq.(2.3) 38 
 

1 2
ˆ , 1, 2, 3...5i i i i

t t
q f e ib b= + + =  (2.3) 39 

Note that only readings from functional detectors are used. The regression coefficients 
1

ib and 
2

ib  are 40 
estimated using the ordinary least squares method. For the models when the HOV lane is activated, only 41 
the data points taken during the HOV activation in the base dataset are used to estimate the coefficients 42 
for HOV models while the data points for the regular period in the base dataset are used to estimate the 43 
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coefficients of regression models for the regular period. The final estimated station flow at time t was 1 
computed as the arithmetic average of all available estimates of station flow using Eq. (2.4). 2 

 
ˆ

ˆ

i
t

LR i
t

q
q

n
=

å
 (2.4) 3 

In Eq. (2.4), n denotes the number of functional detectors at a given time t. For a given time t, it is 4 
essential to determine whether this time stamp belongs to the HOV duration or not and choose the set of 5 
models accordingly. If three detectors, for example, are functional at this time, then an estimate of station 6 
flow can be derived from each detector flow reading. The final estimated station flow is the arithmetic 7 
mean of these three station flow estimates. It can be seen that the linear regression procedure requires that 8 
at least one detector be fully functional in order to derive valid estimates of the station flow at a specific 9 
time. If no detectors report correct flow readings, the station flow is estimated using the temporal 10 
procedureˆT C

tq , i.e. the temporal correction approach serves as a default technique when all detectors fail.  11 

2.4.3. Spatial Correction using Kernel Regression (KR) 12 
Under different traffic conditions (congestion levels), drivers use different lanes, creating lane-to-lane 13 
flow variability in multi-lane freeway sections (Carter et al., 1999; Amin and Banks, 2005).  The lane use 14 
pattern depends on the location and flow conditions (Nihan et al., 2006). In a study of three-lane freeways 15 
under different flow conditions, Pignataro (1998) found that (1) under conditions of low flow, the center 16 
lane carried the majority of the flow while the median lane carried the lowest percentage, (2) as the total 17 
volume increased, flow percentages in the shoulder and center lanes dropped, while the percentage of 18 
total flow in the median lane increased, and (3) when the flow approached section capacity, the 19 
percentages of flow in the median and center lanes were equal, at approximately 37 percent. Other studies 20 
(May, 1990; Carter et al., 1999; Fernandez-Moctezuma et al., 2007) also reported relationships between 21 
the lane use pattern and flow conditions.  22 
 23 
This study proposes a new spatial correction procedure that exploits the relationship between lane use 24 
pattern and flow conditions. A functional detector i at time t reports flow i

tf . The lane use percentage i
tp is 25 

defined as in Eq.(2.5). 26 
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If the lane use percentage i
tp corresponding to the flow reading is known, the station flow can be estimated 28 

by eq.(2.6).  29 

 ˆ
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i t
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f
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=  (2.6) 30 

However, no parametric function exists that can be used to describe the relationship between lane use 31 
percentage and lane flow. Therefore, kernel regression was used to obtain the empirical relationship 32 
between the lane flow and lane use percentage for each lane. 33 
 34 
 In parametric regression with a single regressor, the equation takes the form y = F(x) + e like Eq.(2.3), 35 
where F(x) is a smooth function with known shape described by a number of parameters. The m 36 
observations (xj, yj) (j = 1,2,3,…,m) are used to estimate the unknown parameters and subsequently the 37 
fitted value ˆ

j
y  is given by F(xj). For any given xi, one can always get the estimated ˆ

i
y using the constructed 38 

parametric relationship F. Similarly, the output of kernel regression is also a relationship that can be used 39 
to estimate ˆ

i
y  based on a provided xi. The only difference lies in the fact that kernel regression does not 40 

make assumptions about the shape of this function F(x) (Bowman and Azzalini, 1997).  41 
 42 
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The underlying logic of kernel regression is that every observation other than the point of interest (xi, yi) is 1 
used to derive the fitted value ˆ

i
y  and the observations with the most information about F(xi), or ˆ

i
y , should 2 

be those close to this point of interest (xi, yi)  (Bowman and Azzalini, 1997; Takezawa, 2006). Note that 3 
the closeness of an observation (xj, yj) (j = 1,2,3,…,m and j ≠ i) to the observation in question (xi, yi) is 4 
measured by the distance on the horizontal axis, which is calculated by |xj – xi|. The immediate 5 
neighboring observations, those with smaller distance |xj – xi|, contribute more to deciding F(xi) than 6 
distant ones. Therefore, a weight wij is introduced to measure the magnitude of contribution of an 7 
observation j to the fitted value F(xi). Subsequently, F(xi) is a weighted-average of all y’s of the 8 
observations (xj, yj) (j = 1,2,3,…,m and j ≠ i). Since the observations far from the observation of interest 9 
(xi, yi) should receive little or no weight, a decreasing function is desired to assign weights to each 10 
observation (xj, yj) based on the distance |xj – xi| (i ≠ j). After the weights for the value yj are determined, 11 
F(xi) is computed as the weighted average of all the yj’s. After this process is repeated for each 12 
observation, the shape of the function F(x) can be described by a series of derived points (xi, F(xi)) for i = 13 
1,2,3,…,m where m is the total number of observations. The choice of the weighting function should not 14 
influence the relationship being captured by the kernel regression. Therefore, an additional parameter 15 
bandwidth, denoted by h, is introduced to rescale the horizontal distance so as to minimize the effect of 16 
different choice of weighting function. Hence, the ultimate measure of distance, used to decide the 17 
contribution of an observation to the calculation of fitted value, is the horizontal distance scaled by the 18 
bandwidth, i.e.  |xj – xi|/h. 19 
 20 
In this study, the five detectors are treated separately by constructing a kernel regression based 21 
relationship between individual lane flow and lane use percentage for each of them. Suppose m pairs of 22 
lane flow fj and lane use percentage pj (j = 1,2,3,…,m) for one particular detector are available in the base 23 
dataset which contains flows up to every minute of the past three months of 4 AM to 10 PM for every 24 
day. For a specific observation (fi, pi),  a series of weights wij (j = 1,2,3,…,m and j ≠ i) are assigned to 25 
each lane use percentage pj selected out for this detector to determine fitted lane use percentage ˆ

i
p  based 26 

on the distance measure |fj – fi|. This step is repeated for every pair of lane flow and lane use percentage 27 
(fi,pi) for i = 1,2,3,…,m. The weighting function in this study is the one proposed by Nadaraya and 28 
Watson (2004). The weight for lane use percentage pj was defined based on the difference between lane 29 
flow fi and fj as shown in eq.(2.7).  30 
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To simplify the notation, let ( )/
i j

u f f h= - . Then ( )h
K u  is a function of u and h is a positive-value 32 

bandwidth. The kernel function ( )h
K u  used here is the standard Gaussian kernel, expressed by eq.(2.8).  33 
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The equation proposed by Bowman and Azzalini (1997) was used to determine the optimal bandwidth for 35 
the standard Gaussian kernel. The optimal h was computed using eq.(2.9).  36 
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, (2.9) 37 

where m is the sample size of the base dataset selected for this particular detector. By using eqs.(2.7) to 38 
(2.9), the fitted data point ( )ˆ,i if p can be found and thus the relationship between lane use percentage and 39 
lane flow F can be constructed for this detector. By applying this procedure to all five detectors, then for 40 
any lane flow, the corresponding lane use percentage can be estimated through interpolation based on the 41 
relationship F. 42 
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 1 
Once the lane use percentage is determined, the station flow is estimated using eq.(2.6). Similar to the 2 
LR-based spatial correction, the final estimate of the station flow at time t, denoted byˆKR

tq , is the 3 
arithmetic mean of all the estimates from individual functional detectors.  4 
 5 
The HOV restriction has a potentially large impact on the lane flow distribution. Therefore, the 6 
relationship between the lane flow and lane use percentage is treated separately for the HOV duration and 7 
regular period.  8 
2.4.4. Lane Distribution Correction (LD) 9 
The correction method proposed by Smith and Conklin (2009) exploits both the temporal and spatial 10 
information. Their approach is as follows. A historical lane use percentage i

tp is derived from the 11 
correction base dataset. It is computed as the arithmetic mean of all the available lane use percentages for 12 
lane i at time t as shown in eq.(2.10): 13 
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where d denotes the number of different days within the base dataset and ( )i
tp j is the lane use percentage 15 

of lane i at time t of day j, which can be calculated using eq. (2.5). This historical lane use percentage is 16 
used to estimate the station flow as indicated by eq.(2.11).  17 
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The final estimate of the station flow for time t is the arithmetic mean of all available estimates based on 19 
individual detectors. Specifically, it is written as eq.(2.12):  20 
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where n is the number of functional detectors at time t.  22 
2.5. Experimental Procedures 23 
The experiment consists of two components, namely systematic evaluation and random-error evaluation. 24 
The systematic evaluation assesses the performance of each correction method under all possible error 25 
combinations. Since five different detectors are involved, the number of different error combinations is 25 26 
– 2 = 30. The two cases excluded are (1) all detectors are malfunctioned and (2) all detectors are 27 
functional. Figure 2 visualizes the specific configurations for each error combination. In the random-error 28 
evaluation, errors are introduced in a stochastic manner at different levels: 10, 20, 30, 40, and 50%.  29 
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 1 
Figure 2 Error Configurations for Systematic Evaluation 2 

The performance of the correction methods are compared using two widely-accepted measures of 3 
effectiveness (MOEs): Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). The 4 
MAE metric is defined as in eq.(2.13).  5 
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where T represents the total number of records in the target dataset and qt is real station flow and ˆtq is the 7 
estimated station flow. The MAPE metric converts the absolute quantity to a relative one, which is written 8 
as in eq.(2.14).  9 
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The systematic evaluation targets two periods, namely a peak hour and an off-peak hour, within the 11 
duration of 4:00 AM to 10:00 PM. The selected peak hour is from 8:00 AM to 9:00 AM while the off-12 
peak hour starts at 2:00 PM and ends at 3:00 PM. For each error combination, the flow readings of the 13 
desired detectors are set to be missing for the entire hour.  14 
 15 
Two systematic evaluations are conducted with different purposes. In the first systematic evaluation 16 
(SysEval-I), the KR and LD approaches adopt all available estimates of station flows to derive the final 17 
estimate of station flow for a given time. The results of the first systematic evaluation (SysEval-I) are 18 
analyzed by comparing the performance of correction procedures under different error scenarios so as to 19 
provide insights into the relative importance of each detector as to the accuracy of data correction 20 
methods. These insights were used to modify the LR and KR spatial correction methods. The second 21 
systematic evaluation (SysEval-II) is then conducted by incorporating the modifications. Based on the 22 
results of SysEval-II, observations about their performances under different numbers of malfunctioning 23 
detectors are made.  The procedures are also compared under each error scenario to identify the one that 24 
provides the best performance.  25 
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The systematic evaluation is followed by a random-error evaluation. As mentioned earlier, the target 1 
day contains a total of 5400 individual detector flow records or 1080 station flows. Errors are introduced 2 
into the target dataset in a random fashion at five different error levels ranging from 10% to 50%. The 3 
10% error level means that 10% of the individual flow readings (i.e. 10%×5400 = 540 records) will be 4 
artificially set to missing values. Specifically, a random number between 0 and 1 was generated and 5 
assigned to each detector flow record. If the random number is less than the error level, then this record is 6 
chosen to be set to missing value. Recall that the target dataset contains 259 pre-existing incorrect 7 
detector readings. The actual error percentage could be less than the specified error level when the 8 
existing incorrect detector records are flagged as introduced error. For each error level, 10 replications are 9 
carried out by revising the random number seed so as to eliminate statistical bias. Each replication hosts a 10 
particular combination of the error configurations defined in the systematic evaluation.  11 

 12 
The results of random-error evaluation are analyzed and interpreted from several angles as follows. 13 

The overall performance of each procedure will be evaluated and contrasted at different error levels. The 14 
corrected value is supplied by temporal correction if the other three procedures (LR, KR and LD) fail to 15 
produce an estimate of the station flow for a given time. Such correction failures of the three procedures 16 
aforementioned are assessed to provide insights as to the robustness of the correction procedures. Finally, 17 
the overall performance measure for the random-error evaluation is disaggregated by time of day to 18 
uncover the temporal performance variations.  19 
2.6. Experimental Results 20 
The two sets of linear regression models need to be constructed using the correction base dataset before 21 
the LR correction can be conducted. The regression models for the HOV period and the regular period are 22 
shown in Figure 3 and Figure 4, respectively. The linear relationship between the individual lane flow of 23 
detector 609 and the station flow for the HOV period is weak, which is evidenced by the relatively low 24 
adjusted R2 metric 0.01. The same findings apply for individual lane flow of detectors 607 and 609 for the 25 
regular period. Their adjusted R2 are 0.23 and 0.38 respectively. Using weak linear relationship leads to 26 
unreliable results. Therefore, for the HOV period, the final estimate of station flow is derived as the 27 
arithmetic mean of available estimates from the detector 601, 603, 605 and 607. For the regular period, 28 
only the available estimates based on individual lane flows provided by detectors 601, 603 and 605 are 29 
used for computing the final estimated station flow.  30 
2.6.1. Results of Systematic Evaluation 31 

The results of the first systematic evaluation (SysEval-I) are shown in Figure 5 and Figure 6. Note 32 
that the purpose of SysEval-I is to identify the relative importance of lane detectors with respect to the 33 
accuracy of correction procedure. 34 
 35 
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 1 

 2 
Figure 3 Linear Regression Models for the HOV Period 3 
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 1 
Figure 4 Linear Regression Models for the Regular Period 2 
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 1 
Figure 5 Results of SysEval-I for the Off-peak Hour 2 
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 1 
Figure 6 Results of SysEval-I for the Peak Hour 2 
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An important observation can be made that the MOEs were not uniform within a scenario group of the 1 
same number of malfunctioned detectors. Equivalently, the location of malfunctioned detectors impacts 2 
the accuracy of the correction procedure. (To simplify the narration, detector 601 malfunctioned is 3 
represented by the symbol “d601-X”.) Specifically, for the off-peak period, the temporal correction 4 
method (upper left panel of Figure 5) achieved lowest MAPE and MAE for combination 5 (d609-X, 5 
see Figure 2). For the temporal correction method, the MAPE for combination 6 (d601-X&d603-X) is 6 
significantly higher than that for combination 5. It can be seen that the information from detectors 601 7 
and 603 plays an important role in temporal correction. Similarly, the information from detectors 601 and 8 
603 is important to all correction methods considered in this study. This observation is further 9 
substantiated by combinations 26 and 27 exhibiting high MAPE for all correction methods; for these two 10 
combinations, detectors 601, 603 and 605 malfunctioned.  11 
 12 
Another interesting comparison is the one among error combinations in the off peak period 4 (d607-X), 13 
5(d609-X), 15(d607-X & d609-X) and 16(d601-X, d603-X & d605-X). For the spatial correction method 14 
using kernel regression, the MAPE of combination 15 is even lower than combination 5 as well as 15 
combination 4. This indicates that more information does not necessarily lead to more accurate 16 
estimation. In fact, the addition of information from either detector 607 or detector 609, in the absence of 17 
another detector, decreases the effectiveness of the KR correction method. In addition, the MAPE of 18 
combination 16 is higher than combinations 4, 5 and 15, either of which at least has one functional 19 
detector of the detector group (d601, d603 and d605). A similar pattern is observed in the results of the 20 
peak period. The slight difference lies in the fact that the KR approach achieved the lowest MAPE 21 
(8.40%) for combination 25 (d605-X, d607-X & d609-X) for the off-peak period while the lowest MAPE 22 
6.92% was achieved for combination 15 (d607-X & d609-X) during the peak period. The practical 23 
significance of this finding is that an adaption to the KR approach is needed. Specifically, during the off-24 
peak hour, only available estimates of station flow based on individual lane flows provided by detector 25 
601 and 603 are used. During the peak hour, the lane flows retrieved from detectors 601, 603 and 605 are 26 
used for final estimate of station flow.  27 
 28 
A similar pattern can be found for the lane distribution correction method (lower right panel in Figure 5 29 
and Figure 6). The MAPE for combination 15 is much lower than that for combination 16. In other words, 30 
the estimated station flows based on individual flows of the two right-most lanes are relatively inaccurate. 31 
This is because the right-most lane is the exit lane, whose flow pattern exhibits time-dependent as well as 32 
day-to-day variation. Based on this finding, the LD correction method is revised to use only available 33 
estimates from detector 601, 603 and 605 for deriving the final estimate of station flow. 34 
 35 
The findings of SysEval-I are used to modify the KR and LD approaches to improve their performance 36 
and the systematic evaluation is then conducted again and labeled as SysEval-II. Note that the intent of 37 
SysEval-II is understanding the number of malfunctioned detectors and identifying the best method for 38 
every error configuration. The results of SysEval-II are shown in Figure 7 and Figure 8.  39 

 40 
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 1 
Figure 7 Results of SysEval-II for the Off-peak Hour 2 

 3 
 4 
 5 
 6 
 7 
 8 



Yin, Murray-Tuite   20 

 1 

 2 
Figure 8 Results of SysEval-II for the Peak Hour 3 
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First, the improvement achieved by the modifications based on results of the previous systematic 
evaluation is confirmed by the obvious drop of the MAPEs of the LD approach for both the peak and off-
peak hours as well as the decrease of the MAPEs of the KR approach for the off-peak hour. Therefore, it 
is once again reinforced that the relative importance of each detector is different for the four correction 
procedures.   
 
Additionally, it is seen that the number of malfunctioned detectors influenced the performance of 
temporal correction and the LR spatial correction in a relatively more deterministic fashion than it did the 
other two approaches during the off-peak period. This is evidenced by the general upward trend of the 
MOEs when the number of malfunctioned detectors increased from one to four. However, this trend did 
not present itself in the performance of KR approach and LD approach. It thus follows that these two 
approaches are less sensitive to the number of malfunctioned detectors during the off-peak period. By a 
comparison between the off-peak period and peak-period, this upward trend was less apparent for the 
peak period than that of the off-peak period.  
 
Table 1 highlights the lowest MAPE for each error configuration, which can be used to identify the 
correction procedure that provides superior performance. The procedure that provided the best 
performance is highlighted while the MAPE differences are calculated for the other three procedures. For 
example, temporal correction had the lowest MAPE (5.42%) for error combination 1 during the peak 
hour. The MAPE difference is “+1.79%” for the linear regression (LR) approach, which results in a 
MAPE of 7.21% (i.e. 5.42%+1.79%) for the same error configuration. For the off-peak hour, temporal 
correction (TC) presented dominant performance. The only exception is error combination 21 in which 
LD provided the lowest MAPE 9.04%. Note that the LR approach did perform very closely when TC is 
the best, which is proved by an average MAPE difference of 1.48%. For the peak hour, a similar pattern 
existed for the scenarios in which the number of malfunctioned detectors is less than 2 (before error 
combination 15). Specifically, temporal correction provided the most accurate correction results. When 
the number of malfunctioned detectors becomes three or more (beyond error combination 15), the KR 
approach provided competitive performance for several error configurations for the peak hour. Again, the 
LR approach is the second best with an average MAPE difference 1.95%. Hence, it can be seen that the 
linear regression approach exhibits robustness across different error configurations.  
 
In addition, there are error combinations for which all correction methods exhibited higher error rates. For 
the off-peak hour, error combinations 17 and 18 resulted in MAPEs more than 13% for all procedures. 
The most critical reason is because detector 601 and 603, considered to be most important for all 
procedures, malfunctioned. For the peak hour, the similar combination is combination 22 (only detector 
601 and 609 are working).  
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Table 1 MAPEs for the Different Error Configurations 

Error 
Config. 

MAPE (%)  8:00 AM - 9:00 AM MAPE (%) 2:00 PM - 3:00 PM 
TC LR KR LD TC LR KR LD 

1 5.42 +1.79 +1.61 +9.52 7.77 +1.71 +4.18 +1.27 
2 5.63 +2.82 +2.87 +7.75 6.20 +2.18 +6.56 +4.32 
3 3.12 +5.45 +4.65 +6.87 4.00 +2.8 +4.4 +8.63 
4 5.62 +2.38 +1.31 +2.19 3.95 +2.44 +4.45 +2.51 
5 3.90 +3.86 +3.03 +3.91 3.52 +2.87 +4.88 +2.94 
6 7.20 +0.21 +0.94 +10.86 12.19 +2.54 12.19 +2.74 
7 7.01 +1.09 +1.00 +6.29 9.44 +2.17 +2.51 +2.46 
8 +1.21 +0.34 7.03 +7.91 0.22 +0.44 +2.91 9.04 
9 6.53 +0.68 +0.50 +8.41 8.75 +0.73 +3.2 +0.29 

10 7.47 +2.80 +5.66 +20.43 8.66 +2.4 +4.1 +17.69 
11 5.79 +3.86 +2.71 +7.59 7.20 +1.18 +5.56 +3.32 
12 6.62 +1.83 +1.88 +6.76 7.37 +1.01 +5.39 +3.15 
13 5.58 +3.37 +2.19 +4.41 5.24 +1.56 +3.16 +7.39 
14 4.89 +3.68 +2.88 +5.10 5.94 +0.86 +2.46 +6.69 
15 +0.65 +1.07 6.93 +0.88 4.95 +1.44 +3.45 +1.51 
16 9.20(T) +1.02 9.20(T) 9.20(T) 13.63 13.63(T) 13.63(T) 13.63(T) 
17 +0.01 +0.22 8.14 +9.92 13.28 +1.45 13.28(T) +1.65 
18 +0.9 7.41 +0.73 +10.65 13.09 +1.64 13.09(T) +1.64 
19 +0.8 +0.04 8.01 +5.29 10.16 +1.45 +1.79 +1.74 
20 +0.03 +0.09 8.01 +5.29 10.23 +1.38 +1.72 +1.67 
21 +2.45 +0.34 7.03 +7.91 0.7 +0.44 +2.91 9.04 
22 7.30 +6.78 +5.83 +20.60 8.89 +2.17 +3.87 +17.46 
23 8.13 +2.14 +5.00 +19.77 9.41 +1.65 +3.35 +16.94 
24 7.95 +1.70 +0.55 +5.43 8.11 +0.27 +4.65 +2.41 
25 7.42 +1.53 +0.35 +2.57 6.31 +0.49 +2.09 +6.32 
26 9.45 9.45(T) 9.45(T) 9.45(T) 14.51 14.51(T) 14.51(T) 14.51(T) 
27 10.15 +0.07 10.15(T) 10.15(T) 14.44 14.44(T) 14.44(T) 14.44(T) 
28 +2.03 +0.04 8.01 +5.29 10.81 +0.8 +1.14 +1.09 
29 +1.91 +0.22 8.14 +9.92 14.09 +0.64 14.09(T) +0.84 
30 8.86 +5.22 +4.27 +19.04 9.83 +1.23 +2.93 +16.52 

(T) indicates the temporal correction was used due to the correction failure 
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2.6.2. Results of Random-Error Evaluation 
The KR approach and LD approach hereafter refer to the versions with the adaption mentioned in the last 
sub-section. The comparison between the four correction methods based on MAE and MAPE averaged 
over 10 realizations is presented in Figure 9.  

 
Figure 9 Comparison between Correction Methods 

Clearly, the temporal correction method enjoys the best performance at all error levels. Specifically, for 
error level 10%, the MAPE of the temporal correction method is only 6.76% compared to 15.17% for the 
LD approach, 13.06% for the LR approach, and 11.58% for the KR approach. Even when the error level 
is 50%, the temporal correction method still achieves a MAPE of 11.08%. Considering that the 
percentage of errors within a dataset usually does not surpass 50%, the TC approach essentially provides 
very reliable correction performance for non-incident conditions (in the 2008 dataset used, only 33 days 
out of 314 days had error level greater than 50%).  
 
The LR approach maintains a relatively steady performance at all error levels. The MAPEs for the five 
error levels range from 13.06% to 15.09% while the MAPE ranges for other three approaches each exceed 
5%. This steady trend is determined by the inherent characteristics of the linear regression method. The 
linear relationship used for estimation essentially predicts the expected station flow conditioned on an 
individual lane flow. In addition, the station flow can still be estimated even if there is only one valid lane 
flow. Therefore, even if the error level is high, the performance of LR approach is still stable.  
 
The performance of the lane distribution (LD) approach is not as good as anticipated. The lowest MAPE 
for error level 10% is higher than that reported in Smith and Conklin's (2009) original study. Their work 
reported that the LD approach obtained less than 8% MAPE. However, it would be misleading to say that 
the LD approach is not transferable to other situations. The difference between the results can be ascribed 
to several reasons. The original study used 10-minute aggregate data, which had less noise due to 
aggregation while the dataset for this study has a higher temporal resolution of one minute. Another 
reason is that the freeway section of this study has 5 lanes, which is different from the 3-lane situation 
(without exit lane) in the original study. Though only information from the three left-most lanes was used 
for estimating the station flow, the underlying distinct traffic pattern can lead to significantly different 
results. In addition, though the data for incident duration was excluded, it cannot be guaranteed that the 
incident impact was completely eliminated from the dataset of this study. This is because the reported 
incident duration may be inaccurate due to documenting errors or inaccuracies. Since being free of 
incidents is an explicit requirement for application of the LD approach, potential incident impact may 
undermine the performance of the LD approach.  
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Figure 10 Percentage of Correction Failures (Averaged over 10 Realizations) 

As mentioned in Section 4, the LR, KR and LD approaches require at least one functional detector in 
order to derive the station flow. Therefore, it is beneficial to compare the procedures in terms of their 
correction failure rate. Note that the correction failure indicates that the procedure failed to produce an 
estimate of station flow and had to use the TC estimate as a replacement. The 10-replication average and 
standard deviation for the percentage of correction failure are shown in Figure 10. For error levels 10% to 
30%, all three correction procedures enjoy correction failure rates less than 5% and approximately 6% for 
the 40% error level. This suggests that they are robust under most circumstances considering that most 
dataset usually have less than 50% error percentage.  

2.6.3. Performance of Correction Methods by Time of Day 
To examine time of day effects, the MAPEs were calculated for each hour of the target day, April 22, 
2008. The hourly MAPEs are averaged across the 10 random realizations. The results are visualized 
through Figure 11 to Figure 15. Recall that one detector malfunction (or more) leads to an unreliable 
station flow for a given time, which calls for correction. The maximum possible station corrections made 
for an hour is 60.  (Recall also that the random errors are distributed among the possible individual 
detector readings). 
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Figure 11 MAPE by Time of Day for Error Level 10% 

 
Figure 12 MAPE by Time of Day for Error Level 20% 
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Figure 13 MAPE by Time of Day for Error Level 30% 

 

 
Figure 14 MAPE by Time of Day for Error Level 40% 
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Figure 15 MAPE by Time of Day for Error Level 50% 

The gap for 7:01 to 8:00 is because the original dataset does not have correctly reported flows. Therefore, 
it is meaningless to calculate any performance measurements due to lack of real values. It can be seen that 
the number of corrections made for each hour is relatively steady. Hence, the temporal variation of 
performance is due to the detector malfunction combinations and possibly traffic flow variations instead 
of the error quantity.  
 
At all error levels, the temporal correction generally outperformed the other three procedures. The 
exceptions are time slot 15:00 to 16:00 for error levels 40% and 50%. In both scenarios, the LR approach, 
followed by the KR approach, achieved the lowest MAPE. This indicates that the LR and KR approaches 
outperformed the TC approach under certain circumstances. One example is the time 15:35:00 at which 
the real station flow is 2280 veh/hr and the working detectors for this time slot under one realization of 
the 40% error level are detectors 605, 607 and 609. The estimate by using the TC approach is 2979 
veh/hr. This estimate was derived from the individual lane flows for detectors 601 and 603, which are 675 
veh/hr and 1224 veh/hr while the observed values are 420 veh/hr and 780 veh/hr, respectively. The 
predicted values for the lane flows of detectors 601 and 603 overestimate the readings. A possible reason 
is that the temporal correction method exploits the past traffic pattern. The flow for this particular time 
slot deviates from the average of the flows at the same time in the past, which leads to an inaccurate final 
estimate. The estimate by the LR approach is 2411veh/hr and 2255 veh/hr by the KR approach (in this 
realization), which are very good estimates. As the general trend suggests, the temporal correction still 
has the best performance in terms of estimation accuracy though cases of lower accuracy occurred when 
the flow of a particular time slot deviated from the historical value.  
 
The performance of the LR, KR and LD approaches exhibited relatively high MAPE for the time slot of 
4:00 to 5:00 and deteriorated for the duration after 19:00. Selected individual data points between these 
time durations at the 10% error level are more closely examined. The duration of 4:00 to 5:00 in the 
morning exhibits very light traffic conditions. For example, the real lane flows at 4:10 AM were 0(d601), 
0(d603), 300(d605), 0(d607) and 0(d609). In one realization, the malfunctioned detector was detector 
603. Therefore, the final station flow was derived based on at least one zero flow reading (detector 601). 
The estimated station flow was 1221 veh/hr using the LR approach, which is four times the real station 
flow. Similar cases were found for the KR and LD approaches for the time duration after 20:00. These 
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findings suggest that the LR, KR and LD approaches may produce inaccurate results under light 
conditions especially when the estimates are based on zero flow readings.  

2.7. Conclusions  
In this study, four spatial correction procedures were examined for non-incident related detector data. The 
first approach, temporal correction exploited the inherent temporal trend of historical traffic. The spatial 
correction based on linear regression (LR), a proposed modification of a previous approach, uses the 
relationship between the individual detector flow and station flow. The third approach proposed in this 
study is also a spatial correction method. A unique feature of the proposed spatial correction procedure 
was incorporation of lane use percentage into the correction process through kernel regression (KR). As a 
comparison benchmark, the correction method based on lane distribution (LD) developed by previous 
researchers was included as the fourth method.  
To comprehensively compare the correction procedures, both systematic evaluation and random-error 
evaluation were conducted. After the results of systematic evaluation were analyzed, it was found that 
adaption was needed for the KR and LD approaches. Specifically, the individual lane flows provided by 
the detectors on particular general purpose lanes were discovered to produce the more accurate estimates. 
The two correction procedures (kernel regression and lane distribution) were revised in light of this 
finding and their station flow estimates were compared to those of the temporal correction and the LR 
approach at five error levels, which was considered as the random-error evaluation.  
The results of the study are for a specific detector station that has five lanes, one of which is an exit lane. 
This configuration is different from numerous previous studies and may have a significant impact on the 
performance of the spatial correction procedures. The transferability of the results to other facilities, lane 
quantities and configurations, and distance from ramps is an area for future study. However, several 
practical recommendations can still be made. 

2.7.1. Summary of Findings and Practical Recommendations 
First, it is critical to calibrate the correction methods according to location-specific characteristics since 
each detector has different significance for the correction accuracy. This is especially warranted for 
approaches involving lane distribution. Information from more individual detectors does not necessarily 
lead to more accurate performance as shown by the results of the two systematic evaluations. Selection 
rules as to which individual lane flows to include need to be constructed before applying the kernel 
regression (KR) and lane distribution (LD) approaches. In this study, including the information from the 
exit and adjacent lanes may undermine the accuracy of these two approaches.  
 Second, the systematic evaluation indicated that the temporal correction generally produced the 
most accurate results for most error configurations. However, as the number of malfunctioned detectors 
increased, the KR approach provided better results under certain error combinations. In addition, the 
linear regression (LR) approach possesses robustness, which can achieve accuracy very close to that of 
the best approaches under various error configurations and thus it could be a viable choice for a dataset 
with diverse error configurations.  
 It is beneficial to know the distribution of error configurations and select the correction procedure 
accordingly. If one error configuration is dominant in the target dataset, the best approach corresponding 
to this specific error configuration should be chosen. For example, it is not uncommon that a detector 
malfunctions for an extended period of time while its –in-station counterparts work properly. The suitable 
correction method for this particular time span can be selected according to the error configuration to 
achieve the best performance. 
 Third, the time of day performance assessment confirmed the superior performance of the 
temporal correction approach. Overall, this approach outperformed the others at all random error levels 
though sporadic cases in which other methods were better did exist. Associated with time of day are 
traffic conditions, which were important to the spatial correction procedures, especially when valid 
observations of zero flow were incorporated into an average. Thus, time of day and traffic conditions 
should be considered when selecting a correction procedure. 
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In addition to performance-based suggestions, considerations should be given to practical 
implementation. Though the temporal correction method generally provides the most accurate results, it 
requires the archival of the historical traffic data at all times. One query to the historical data is necessary 
for each individual lane correction. This may be time-consuming for certain applications in which 
efficiency is greatly desired such as real-time correction of traffic data streams for multiple locations. The 
storage space and processing time might become prohibitively expensive. When the size of the target 
dataset is small or speed is not the top priority, the temporal correction would be an ideal pick out of the 
four procedures examined, provided that the dataset is incident free. Therefore, it is important to take into 
the characteristics and requirements of the application into consideration when choosing the correction 
method. When the accuracy is not strictly demanded, correction speed is an issue, or a diverse set of error 
configurations are present, the spatial correction based on linear regression can be used.  
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CHAPTER 3 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODEL FOR 
SHORT-TERM FREEWAY TRAFFIC FLOW FORECASTING 

To provide input to origin-destination (OD) matrix prediction, the traffic flows are forecast using the Auto 
Regressive Integrated Moving Average (ARIMA) model on a short-term basis. This chapter starts with an 
introductory discussion of modeling traffic volume series. Then it reviews the relevant previous studies. 
The framework of Box-Jenkins ARIMA modeling is then presented. The modeling process for Interstate 
66 and results are discussed in the fourth section. The final section draws some conclusions.  
 

3.1. Introduction 
In addition to the application of OD prediction, short-term traffic forecasting is essential for various 
applications such as tactical decisions and traffic system operations, advanced warning in monitoring 
systems, and implementation and control of long-range plans (Nihan and Holmesland, 1980). 
Furthermore, accurate forecasts are important for implementation and evaluation of real-time control 
strategies in a feedback system, such as within the demand-responsive ramp-metering control 
environments (Lee and Fambro, 1999) and incident detection (Ahmed and Cook, 1980), because traffic 
flow is one of the fundamental types of data for traffic control and the general planning process. Within 
the context of advanced traffic management system, the role of accurate and reliable traffic flow data is 
crucial to satisfy the objectives of intelligent transportation systems (Lee and Fambro, 1999). To improve 
the responsiveness and satiate the sophistication of the transportation systems, forecasts of future status of 
the transportation system, usually characterized by traffic flow, density and speed, are in demand.  
 
Currently, individual travelers frequently face the challenge of making their trip decisions based on 
current, rather than short-term, anticipated traffic conditions. The dynamic nature of traffic conditions 
necessitates the use of short-term forecasting tools to provide transportation users with the expected travel 
times and delays on main routes in short time intervals, possibly in the range of 5, 10, or 15 min time 
frames (Ishak and Al-Deek, 2002). Short-term predicted travel times and delays may have a significant 
impact on the travelers’ pre-trip and en route decisions in terms of route selection, departure time, and 
possibly mode selection, especially at areas where public transit is competitively available (Ishak and Al-
Deek, 2002). Essentially, efficient dissemination of predicted travel information should help spread 
congestion over time and space. To achieve this objective, short-term traffic prediction models are 
important in the sense that they characterize the dynamic nature of traffic conditions which then help the 
travelers at the onset of the trip and even en route. 
 

3.2. Previous Studies for Traffic Forecasting 
Due to the significance of traffic forecasting as previously discussed, various techniques other than 
ARIMA modeling have been used in the area of traffic forecasting. The exponential filtering technique 
for traffic flow forecasting was employed by Ross (1982) and later expanded to the general digital 
filtering technique by Coifman (1996). The nonparametric forecasting method was applied using the k-
nearest-neighbor approach to forecast short-term freeway traffic (Davis and Nihan, 1991; Tao et al., 
2010). The Kalman filtering method was used for traffic volume forecasting both from the perspectives of 
traffic time-series (Okutani and Stephanedes, 1984) and traffic network level (Whittaker et al., 1997). 
Traffic forecasting has also been studied by the use of different neural networks with different 
configurations (Taylor and Meldrum, 1995; Cheu, 1998; Ruimin and Huapu, 2009).  
 
The time-series technique has been widely used in the area of traffic forecasting. Ahmed and Cook 
(1979; 1980) were among the early attempts to use the Box and Jenkins method to forecast freeway traffic 
volume. They fitted an ARIMA (0,1,3) model to the traffic volume series and applied the model for 
freeway incident detection. They compared the short-term traffic volume forecasts of the ARIMA (0, 1, 3) 
model to those obtained by double exponential smoothing, simple moving average (with orders of 5, 10, 
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and 20), and exponential smoothing with adaptive response (the value of α is changed for each one-step 
forecast). The four models were developed and evaluated on 166 data sets obtained from three 
surveillance systems: Los Angeles (20-sec intervals), Minneapolis (30-sec intervals), and Detroit (60-sec 
intervals). The authors found that the ARIMA (0, 1, 3) forecasts were the most accurate in terms of the 
mean absolute error and mean square error. Levin and Tsao (1980) applied the ARIMA methodology to 
both volume and occupancy series, and they compared two models to select a proper model for the use of 
freeway traffic volume forecasting. They also compared the performance of the ARIMA (0, 1, 1) model 
with the Illinois Department of Transportation Traffic Systems Center’s ARIMA (0, 1, 0) model [actually 
an ARIMA (3,1,0) with φ1 =φ2 =φ3 = 1⁄3]. The two models were tested on traffic data from the Dan 
Ryan Expressway in Chicago. The ARIMA (0, 1, 1) model was superior. Different from previous works,  
Dhingra et al. (1993) focused on the application of four ARIMA models for forecasting truck traffic 
volume.  
 
Some researchers also endeavored in incorporating other techniques into the ARIMA modeling 
framework. An application of the classification motive to the ARIMA model was conducted with 
Kohonen self-organizing maps (Van Der Voort et al., 1996). In this study, an ARIMA( p, 0, q) with p = 2 
or 3 and q =1 or 2 was applied to clustered outputs from a 15-row by 20-node hexagonal Kohonen map. A 
comparison by Smith (1995) of neural network, nearest-neighbor, historical average, and ARIMA models 
showed that an ARIMA (2, 1, 0) model did better than the historical average model and worse than the 
nearest-neighbor and neural network models. However, the ARIMA model was applied to only one data 
set and tested for only 2 days of the data set because of embedded missing values. This comparison was 
later repeated by Kirby et al. (1997) using 30-min traffic volume data. Each study concluded that one out 
of the two methods was better than the other, indicating that the performance of the models was subject to 
data and model structures. In the work by Szeto et al. (2009), the Seasonal ARIMA (SARIMA) model 
served as the demand generator for the Cell Transmission Model to simulate a urban transportation 
system in Ireland.  
 

3.3. The Theory of ARIMA Modeling 
This section presents the ARMA modeling framework in detail. First, the formulations of the various 
models and their properties are discussed. In addition, the Box-Jenkins time-series modeling philosophy 
is presented.  

3.3.1. Weak Stationarity and Ergodicity 
Stationarity 
To discuss stationarity and ergodicity, the auto-covariance needs to be defined first. Given a particular 
realization such as { }t ty + ¥

= - ¥  on a time series process, a vector tx  which consists of the most recent (j+1) 
observations on y as of date t can be constructed: 
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Therefore, the auto-covariance 
jt

g  is the (1, 1)j + th element of the variance-covariance matrix in eq.(3.2).  
 
If neither the mean 

t
m  nor the auto-covariance 

jt
g  depend on the date t, then the process for 

t
Y  is said to be 

covariance-stationary or weakly stationary. Mathematically, these two requirements state as:  
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The weak stationarity implies that the covariance between 
t

Y  and 
t j
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 only depends on j, the length of time 
separating the two observations, and not on t, the date of the observation. In addition, 
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 are equal. 

To see this, recall the definition of auto-covariance in eq.(3.1),  
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According to the definition of weak stationary process in eq.(3.3), the magnitude 
j

g  is identical for any t. 
Hence, the t in eq.(3.4) can be replaced by ( )t j+ , which generates,  
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However, by the definition of auto-covariance, this expression defines 
j

g
-

. Therefore, 
j jg g-=  follows. 

Equivalently, the variance-covariance matrix of tx  is now symmetric.  
Ergoticity 
Suppose there are N sequences (1){ }t ty + ¥

= - ¥ , (2){ }t ty + ¥
= - ¥ ,…, ( ){ }N
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= - ¥ . If the observation with index t from 
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This unconditional expectation of 
t

Y  can also be viewed as the probability limit of the so-called ensemble 
average:  

 ( ) ( )

1

1plim
N

i
t t

N i

E Y Y
N® ¥ =

= å  (3.7) 

Usually, what is available is a single realization of size T from the process, for example the first 
realization sequence denoted as (1) (1) (1)

1 2
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T
y y yK . The sample mean of this realization is not ensemble 

average but the time average, which is expressed as:  
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A covariance-stationary process is said to be ergodic for the mean if eq.(3.8) converges in probability to 
( )

t
E Y  in eq.(3.7). Indeed, if the auto-covariance for a weakly stationary process satisfy 



Yin, Murray-Tuite   33 

 
0

j
j

g
¥

=

< ¥å  , (3.9) 

then the process is ergodic for the mean.  

3.3.2. The White-Noise Process 
The basic building block for all ARMA processes is the white-noise process  whose elements have 
zero mean and finite variance :  

 
( )
( )2 2

0t

t

E
E

e
e s

ìï =ïïíï =ïïî
 , (3.10) 

and the ε’s are uncorrelated across time, i.e.  
 ( ) 0tE te e =  (3.11) 
If the white-noise process satisfying eqs.(3.10) and (3.11) follows Gaussian distribution,  
 ( )2~ 0,Ne s  , (3.12) 
the process is a Gaussian white-noise process.  

3.3.3. The qth Order Moving Average Process – MA(q) 
A qth-order moving average process, commonly abbreviated as MA(q),  is characterized by  
 1 1 2 2t t t t q t qY m e q e q e q e- - -= + + + + +L  , (3.13) 

where { }1
, , ,

t t t q
e e e

- -
K  satisfies the requirements of white-noise series, the coefficients q’s and m are 

deterministic real scalars. The mean of tY  is given by taking expectation on both sides of eq.(3.13):  

 ( ) ( )
0

q

t j t j
j

E Y Em q e m-
=

= + =å  (3.14) 

where 0q  is defined to be unity. The variance of tY  is computed as 

 ( ) 22

0 1 1 2 2t t t t q t qE Y Eg m e q e q e q e- - -

é ù é ù= - = + + + +ê ú ê úë ûê úë û
L . (3.15) 

Recall that the ε’s are uncorrelated across time in eq.(3.11). This implies that the expectations of the 
cross-terms are all equal to zero.  Therefore, the variance of tY  in eq.(3.15) simplifies to eq.(3.16).  

 ( )2 2 2 2 2
0 1 1 2 2 1 21t t t q t q qEg e q e q e q e q q q s- - -

é ù= + + + + = + + +ê úë ûL L  (3.16) 

The auto-covariance ( )1, 2,
j

j qg = K  is defined as:  
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For j q> , there are no e’s with identical dates in the definition of 
j

g  and thus the expectation is zero. To 
summarize, the auto-covariance of an MA(q) process is shown in  

 
( )
( )

2 2 2 2
1 2

2
1 1 2 2

1 , 0

, 1, 2,
0,

q

j j j j q q j

j

j q
j q

q q q s

g q q q q q q q s+ + -

ìï + + + =ïïïï= + + + + =íïï >ïïïî

L

L K  (3.18) 

As an illustrative example, for an MA(2) process defined as:  
 1 1 2 2t t t tY m e q e q e- -= + + +  (3.19) 
The auto-covariance is computed using eq.(3.18) and results are  
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 (3.20) 

The MA(q) model in eq.(3.13) can be rewritten in a more compact form as in eq.(3.21) with 
0

1q = :  

 1 1 2 2
0

q

t t t t q t q j t j
j

Y m e q e q e q e m q e- - - -
=

= + + + + + = + åL  (3.21) 

Consider the process when q approaches infinity,  

 0 1 1 2 2
0

q

t j t j t t t
j

Y m y e m y e y e y e- - -
=

= + = + + + +å L  (3.22) 

This process defined in eq.(3.22) can be described as an MA(∞) process. Note the notational difference 
for the coefficients. y ’s are used to represent coefficients in an infinite-order MA process while q’s those 
in a finite-order coefficients.  
 

3.3.4. The pth-order Autoregressive Process- AR(p) 
A pth-order autoregression, denoted by AR(p), satisfies eq.(3.23).  
 1 1 2 2t t t p t p tY c Y Y Yf f f e- - -= + + + + +L  (3.23) 
Provided the roots of the characteristic equation of the AR(p) process in eq.(3.24),  
 2

1 21 0p
pz z zf f f- - - - =L  (3.24) 

all lie outside the unit circle, the AR(p) process can be converted to the covariance-stationary infinite-
order MA(∞) process, which has the representation as  
 ( )t tY Lm y e= +  (3.25) 
where  
 2 1

1 2( ) (1 )p
pL L L Ly f f f -= - - - -L  (3.26) 

and  
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The first-moment of a stationary AR(p) process can be found by taking expectation of both sides of 
eq.(3.23). Recall the characteristics of the white-noise process in eq.(3.10), one writes: 
 1 2/ (1 )pcm f f f= - - - -L  (3.28) 
Writing the AR(p) process in its mean-deviation form as eq.(3.29), 
 1 1 2 2( ) ( ) ( )t t t p t p tY c Y Y Ym f m f m f m e- - -- = + - + - + + - +L  (3.29) 
the auto-covariance are found by multiplying both sides of (3.29) by ( )

t j
Y m

-
-  and taking expectations. 

This leads to eq.(3.30). 
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 (3.30) 

Since the process is weakly stationary, 
j j

g g
-

= , the system of equations in (3.30) for j = 0,1,…,p can be 

solved for 
0

g ,
1

g ,…,
p

g  as functions of 2s , 
1

f ,
2

f ,…,
p

f . In fact, the vector 
0 1 1

( , , ..., )
p

g g g
-

¢ is given by the 

first p elements of the first column of the 2 2( )p p´  matrix 2

2 1[ ( )]
p

s -- ÄI F F  where F is defined as 
eq.(3.31) and Ä indicates the Kronecker product.  
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3.3.5. The Auto Regressive Moving Average Process - ARMA(p,q) 
An ARMA(p,q) process includes both auto regressive and moving average terms. It takes the form as 
eq.(3.32).  
 1 1 2 2 1 1 2 2t t t p t p t t t q t qY c Y Y Yf f f e q e q e q e- - - - - -= + + + + + + + + +L L  (3.32) 
Or in lag operator form, it is written as eq.(3.33).  
 2

1 2 1 2(1 ) (1 )p q
p t q tL L L Y c L L Lf f f q q q e- - - - = + + + + +L L  (3.33) 

If the roots of the characteristic polynomial of the auto regressive terms  
 2

1 2( ) 1 p
pL L L Lf f f f= - - - -L  (3.34) 

are outside the unit circle. Both sides of (3.33) can be divided by ( )Lf  to obtain 
 ( )t tY Lm y e= +  (3.35) 
where  
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3.3.6. The Box-Jenkins Modeling Philosophy 
The Box-Jenkins modeling philosophy adopts a three-step iterative scheme, which consists of 
identification, estimation and diagnostic checking.   

(1) Identification: Calculate the sample autocorrelation function (ACF) and partial 
autocorrelation function (PACF) for different lags. We compare the estimated ACF and 
PACF with various theoretical ACF’s and PACF’s to find a match. A tentative model is 
chosen when its ACF and PACF best match the estimated ACF and PACF.  

(2) Estimation. The tentative model identified is fitted to the data to get estimates of its 
parameters. These coefficients are examined for stationarity, invertibility, statistical 
significance and other quality measures.  

(3) Diagnostic-checking. At this stage, the hypothesis that the residuals of the estimated model 
are white-noise is checked. If they are not, one returns to the identification stage to select 
another model. This iteration continuous until the diagnostic-checking procedure suggests the 
model meets the requirement.  

 

3.4. Modeling the Traffic Flow Series for Interstate 66 
The traffic flow series used to demonstrate the Box-Jenkins time-series technique is from detector station 
27, which is a mainstream detector station on Interstate 66. The data is in 5-minute resolution, which was 
converted from one-minute series after temporal correction discussed in Chapter 2. 
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3.4.1. Identification 

 
Figure 16 Series Plot of Hourly Flow for Station 27 

In Figure 16, the station flow series is plotted. It can be seen that the flow series has decreasing trend. 
Hence, it is not stationary. The first-difference is applied to make it stationary. The differenced series is 
shown in Figure 17.  

 
Figure 17 First-Difference Series of Hourly Station Flow 

The series after first-difference is stationary since there is no obvious trend and the variance seems 
homogenous. Hence, we can now proceed to the calculation of the ACF’s and PACF’s.  
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Figure 18 ACF and PACF for the First Difference Series 

Figure 18 shows the ACF’s and PACF’s for various lags, which suggests an MA(2) model due to the cut-
off ACF and dampening PACF. The parameter estimates are shown Table 2.  
Table 2 Parameter Estimates for MA(2) Model 

Parameter Estimate Std. Err. t Value Pr > |t| 
MU -7.8157 19.9396 -0.39 0.6955 

MA1,1 0.5660 0.07214 7.85 <.0001 
MA1,2 -0.1810 0.07224 -2.51 0.0131 

 
The coefficients all enjoy statistical significance at 0.05 level. Note that the outliers have been identified 
and removed from the first-difference series. The diagnostic panel is shown in Figure 19.  

 
Figure 19 Diagnostic Panel for the MA(2) Model 



Yin, Murray-Tuite   38 

The upper left panel is the residual autocorrelation. All lagged autocorrelation is not significantly 
different from zero, which supports the covariance-stationary assumption for the residual. The normal 
distribution of the residual is supported by the QQ plot and density plot, which suggest close alignment of 
Gaussianity. The White-noise plot (lower right panel) suggests that the lags until 24 are not significantly 
different from zero, which further confirms the validity of the white-noise residual.  

 
Figure 20 Forecast of the MA(2) Model 

The MA(2) model can now be used for forecasting the future flows. Figure 20 shows the half-hour 
forecast into the future (after the dash line). The superiority of the fitness of the MA(2) model is 
evidenced by an MAE (Mean Absolute Error) of 344.53 and MAPE (Mean Absolute Percentage Error) of 
7.07%.  
 

3.5. Conclusions and Discussion 
The station flow series was successfully modeled by an MA(2) model using the Box-Jenkins time series 
technique. It enjoys an MAE of 344.53 and MAPE of 7.07%. The limitation is that different models are 
needed for each station and the model may be different for a different time period. In other words, the 
model is not transferable spatially or temporally. However, once the model is fitted, it can be used to 
forecast the traffic hourly flow, which can subsequently be used to predict the origin-destination demands.  
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CHAPTER 4 DYNAMIC ORIGIN-DESTINATION MATRICES ESTIMATION 
The traffic flows modeled by the Box-Jenkins time series technique are used to estimate the origin-
destination (OD) matrices in a dynamic fashion. The first section discusses the QueensOD software and 
the second section presents the modeling process and results.  
 

4.1. Overview of the OD Estimation Process in QueensOD 
The QueensOD is an algorithm that solves the so-called synthetic OD estimation problem. The objective 
of the problem is to estimate the OD matrices based on the information about the magnitude of trip ends 
and additional links along the route of each trip (Van Aerde et al., 2003). Within the overall static 
synthetic OD generation problem, there are two main categories. The first exists when the routes that 
vehicles take through the network are known a priori (Van Aerde et al., 2003). The second arises when 
these routes need to be estimated concurrently while the OD is being estimated (Van Aerde et al., 2003). 
A prior knowledge of routes can arise automatically when there is only one feasible route between each 
OD pair or when observed traffic volumes are provided only for the zone connectors at the origins and 
destinations in the network. The first condition is common when ODs are estimated for a single 
intersection or arterial or for a single interchange or freeway, which is exactly our scenario for Interstate 
66.  
 
The following notations in Table 3 are used in this chapter.  
Table 3 Notations for QueensOD Model 

Notation Meaning 

ij
T  Estimated number of trips between zone i and j for the 

analysis period for trip purposes 
k

ij
T  Estimated number of trips between zone i and j for the 

analysis period for trip purpose k 
k
ij

c  
Proportion of trips between zones i and j for purpose k. 

It is equal to /k
ij ij

T T  

i
P  Total number of trips produced by zone i for the analysis 

period 

j
A  Total number of trips attracted by zone j for the analysis 

period 

ij
F  

Impedance function for travel between zones i and j 
during the analysis period (typically inverse function of 

travel time) 

ij
K  Socioeconomic adjustment factor between zones i and j 

ij
t  Seed trips between zones i and j 

T  Total number of trips (
ij i j

T P A= =å å å å  

a
V  Actual observed link volume on link a 

a
V ¢ Volumes on link a that are closest to Va that satisfy flow 

continuity. 
 
The QueensOD model starts from the well-known gravity trip distribution formula as shown in  

 j ij ij
ij i

j ij ij
j

A F K
T P

A F K

æ ö÷ç ÷ç ÷ç ÷= ç ÷ç ÷ç ÷ç ÷÷çè ø
å

 (3.37) 

For the trip distribution formula, the trip production and attraction rates are not measured with road 
counts but are estimated from land use based on trip distribution equations. QueensOD treats the trip 
distribution matrix as a seed matrix and then systematically uses the observed traffic flow counts in a 
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synthetic O-D generation process (Van Aerde et al., 2003). Because the O-D problem is underspecified, 
multiple O-D demands can generate identical link flows. The use of a seed matrix ensures that the 
optimum solution that satisfies the link flows resembles the seed solution as closely as possible (Van 
Aerde et al., 2003).  
 
QueensOD employs the maximum likelihood formulation for the OD estimation problem due to the 
under-specified nature of the problem. The trip-based approach to defining maximum likelihood 
considers that the overall trip matrix is made up of uniquely identifiable individual trip makers (Van 
Aerde et al., 2003). The likelihood function takes the following form:  

 ( ) ( )
!max ,

!

ijT

ij
ij ij

ij ijij
ijij

tTZ T t
tT

æ ö÷ç ÷ç ÷ç ÷= ç ÷ç ÷ç ÷ç ÷÷çè ø
Õ åÕ

 (3.38) 

This likelihood function is to be maximized, subject to a few constraints. The first constraint is the flow 
continuity, which requires the sum of all trips crossing a given link must be equal to the link flow on that 
link, as indicated in 
 ,a

a ij ij
ij

V T p a= "å  (3.39) 

This simple set of equality constraints, while making the formulation complete, at times may also render 
the problem infeasible (Van Aerde et al., 2003). A more general formulation proposed here, therefore, is 
to request that the error in the link flow constraints be minimized instead of eliminated. In other words, 
instead of finding the most likely O-D that exactly replicates the observed link flows, the problem is 
reformulated as finding the most likely O-D matrix from among all those that come equally close to 
matching the link flows (Van Aerde et al., 2003). The mathematical expression for minimizing the error is 
shown in (3.40). 

 ( )
2

min a
ij a ij ij

a ij

Z T V T p
æ ö÷ç ÷= -ç ÷ç ÷çè ø

å å  (3.40) 

The flow continuity constraint in the form of eq.(3.40) can be integrated with the objective function in 
eq.(3.38) as:  

 ( )!max 2
ijT

ij a a a
ij a ij ij xy xy

ij ij a a xyij
ij

tT V p p T p
T t

l
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 (3.41) 

Taking the natural logarithm of the objective function makes the output easier to handle and allows one to 
use Stirling’s approximation as a convenient continuous equivalent to the term ln(x!), as indicated in 
eq.(3.42).  
 ( )ln ! lnT T T T= -  (3.42) 
The final form of the objective function of an unconstrained optimization problem is shown in 

 ( )max ln ln 2ij a a a
ij ij a ij ij xy xy

ij ij a a xyij

TTT T V p p T p
t t

l
æ öæ ö ì üæ öæ ö ï ï ÷÷ çç ÷÷ ï ïçç ÷÷ çç ÷÷- - × - çç í ý÷÷ ÷çç÷ ç ÷÷ç ÷ ÷ç ï ïçç ç÷ ÷ç çè ø è øè ø è øï ïî þ

å å å å å  (3.43) 

QueensOD fully optimizes the objective function of eq.(3.43). This formulation makes use of a single 
approximation—namely, the Stirling’s approximation—which has been shown to produce errors of less 
than 1% for the range of values and derivatives typically being considered in the problem (Van Aerde et 
al., 2003). 
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4.2. OD Estimation of Interstate 66 Using QueensOD 
The study section of I-66 E consists of three interchanges as shown in Figure 21.  

 
Figure 21 Study Section of I-66 E for OD Estimation 

 
The study section is represented by an abstract network in QueensOD as shown in Figure 22.  

 
Figure 22 Study Section Represented in QueensOD 

Each on-ramp is modeled as an origin and off ramp is considered as a destination. In total, there are 7 
destinations and 5 origins. Note the links are numbered after the corresponding detector station number 
except for those whose detector station has a number larger than 500. These links are ramps and 
numbered as their station number minus 400. The QueensOD input files for the network are attached in 
the Appendix B.  
 
The traffic flows used are from 4:00 AM to 9:00 PM on 10/30/2009. The temporal resolution is 5 
minutes, which were converted from one-minute data. The one-minute data is corrected using the 
temporal correction approach identified as the best correction approach in Chapter 2.  
 
The performance of the OD estimation is evaluated by checking whether the estimated flows reproduce 
the observed ones. The flows for part of links are organized into a panel shown in Figure 23.  
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Figure 23 Comparison between Estimated Flows and Observed Flows 

 



Yin, Murray-Tuite   43 

The numerical performance measures, namely Mean Absolute Errors (MAEs) and Mean Absolute 
Percentage Errors (MAPEs) are shown Table 4.  
Table 4 Performance Measures Estimated Link Flows 

Link No. MAE RMSE MAPE 
1 279.66 362.56 6.98% 
2 1374.23 1414.48 42.85% 
3 451.72 621.26 10.44% 
4 425.01 481.26 13.96% 
5 317.84 482.12 7.80% 
6 295.77 455.43 7.08% 
7 550.70 872.55 11.51% 
8 1434.22 1810.92 28.23% 
9 573.64 692.85 15.65% 

10 889.94 980.17 14.73% 
11 378.95 515.32 8.45% 
12 332.62 440.74 7.38% 
13 381.51 529.70 7.91% 
14 276.49 339.96 6.31% 
15 492.48 633.80 43.63% 
16 232.77 272.18 33.21% 
17 7.73 33.30 35.33% 
18 186.28 310.89 27.72% 
19 147.87 267.61 19.72% 
20 294.30 375.96 14.34% 
21 108.14 143.26 20.85% 
22 88.07 136.02 12.89% 
23 105.22 131.02 19.35% 
24 86.91 231.87 3.06% 

 
Generally, the relative errors (MAPE) are around 10% with a few higher exceptions. This is possibly due 
to the fact that the QueensOD requires the actual travel time as inputs when estimating dynamic OD 
matrices. The actual travel times were computed using the BPR function according to observed flows, 
which could be a source of error.  
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CHAPTER 5 DISCUSSIONS AND CONCLUSIONS 
This project uses the Box-Jenkins time-series technique to model and forecast the traffic flows and then 
use the flow forecasts to predict the origin-destination matrices. First, a detailed analysis was conducted 
to investigate the best data correction method.  
 
Four spatial correction procedures were examined for non-incident related detector data. The first 
approach, temporal correction exploited the inherent temporal trend of historical traffic. The spatial 
correction based on linear regression (LR), a proposed modification of a previous approach, uses the 
relationship between the individual detector flow and station flow. The third approach proposed in this 
study is also a spatial correction method. A unique feature of the proposed spatial correction procedure 
was incorporation of lane use percentage into the correction process through kernel regression (KR). As a 
comparison benchmark, the correction method based on lane distribution (LD) developed by previous 
researchers was included as the fourth method.  
 
To comprehensively compare the correction procedures, both systematic evaluation and random-error 
evaluation were conducted. After the results of systematic evaluation were analyzed, it was found that 
adaption was needed for the KR and LD approaches. Specifically, the individual lane flows provided by 
the detectors on particular general purpose lanes were discovered to produce the more accurate estimates. 
The two correction procedures (kernel regression and lane distribution) were revised in light of this 
finding and their station flow estimates were compared to those of the temporal correction and the LR 
approach at five error levels, which was considered as the random-error evaluation.  
 
After applying the temporal correction method to the data set, the station flow series was modeled using 
the Box-Jenkins time-series modeling framework. The station flow series was successfully modeled by an 
MA(2) model using the Box-Jenkins time series technique. It enjoys an MAE of 344.53 and MAPE of 
7.07%. The limitation is that different models are needed for each station and the model may be different 
for a different time period. In other words, the model is not transferable spatially or temporally. However, 
once the model is fitted, it can be used to forecast the traffic hourly flow, which were subsequently used 
to predict the origin-destination demands. 
 
The performance of QueensOD modeling is relatively good, which is evidenced by approximately 10% 
MAPE for a majority of links. Generally, the relative errors (MAPE) are around 10% with a few higher 
exceptions. This is possibly due to the fact that the QueensOD requires the actual travel time as inputs for 
dynamic OD estimation. These travel times were estimated in this study using the BPR function 
according to observed flows, which could be a source of error. 
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APPENDIX A SAS CODE FOR BOX-JENKINS MODELING 
 
/*------------------------------UBJ-ARIMA Modeling---------------------------
-*/ 
 
/*ODS Graphics Settings*/ 
ODS GRAPHICS ON; 
ODS LISTING IMAGE_DPI = 300 STYLE= STATISTICAL; 
 
/*Convert the Sum 5-Min Data to Average 5-Min Data*/ 
DATA Trts.Station_27_5Min; 
 SET Trts.Station_27_5Min; 
 CSF_5MinAvg = CSF_5Min/5; 
RUN; 
 
/*----------STEP 1: IDENTIFICATION-----------------*/ 
TITLE "5-Min Data "; 
PROC SGPLOT DATA = Trts.Station_27_5Min; 
 SERIES X = Traffic_Time Y = CSF_5MinAvg; 
RUN; 
/*Findings*/ 
*1: The original series is not stationary.; 
 
 
 
TITLE "5-Min 1st Diff"; 
PROC ARIMA DATA = Trts.Station_27_5Min 
 PLOTS(UNPACK) = ALL; 
 IDENTIFY  
   VAR  = CSF_5MinAvg(1) 
     NLAG = 24; 
RUN; 
QUIT; 
/*Findings*/ 
*1: The first-difference series seems stationary.; 
TITLE "5-Min 2nd Diff"; 
PROC ARIMA DATA = Trts.Station_27_5Min 
 PLOTS(UNPACK) = ALL; 
 IDENTIFY  
   VAR  = CSF_5MinAvg(1,1) 
     NLAG = 24; 
RUN; 
QUIT; 
/*Findings*/ 
*1: The second-difference series does not present significantly different 
results.; 
*2: Use both difference series for estimation.  
*3: The ACF cut off at 1 or 2 and PACF damps out, suggesting an MA(1 or 2) 
model; 
 
/*-----------STEP 2: ESTIMATION-------------------*/ 
TITLE "5-Min 1st Diff MA(1) and MA(2)"; 
PROC ARIMA DATA = Trts.Station_27_5Min 
 PLOTS(UNPACK) = ALL; 
 IDENTIFY  
   VAR  = CSF_5MinAvg(1) 
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     NLAG = 24; 
 ESTIMATE 
   Q = 1; 
 ESTIMATE 
         Q = 2; 
RUN; 
QUIT; 
 
 
TITLE "5-Min 2nd Diff MA(1) and MA(2)"; 
PROC ARIMA DATA = Trts.Station_27_5Min 
 PLOTS(UNPACK) = ALL; 
 IDENTIFY  
   VAR  = CSF_5MinAvg(1,1) 
     NLAG = 24; 
 ESTIMATE 
   Q = 1; 
 ESTIMATE 
         Q = 2; 
RUN; 
QUIT; 
/*Findings*/ 
*1 The MA(2) model for first-difference series is the best; 
*2 The MA(2) model for second-diff violates the invertibility requirement; 
TITLE "5-Min 1st Diff MA(1) Outlier"; 
PROC ARIMA DATA = Trts.Station_27_5Min 
 PLOTS(UNPACK) = ALL; 
 IDENTIFY  
   VAR  = CSF_5MinAvg(1) 
     NLAG = 24; 
 ESTIMATE 
         Q = 1; 
 OUTLIER; 
RUN; 
QUIT; 
 
 
TITLE "5-Min 1st Diff MA(2) Outlier"; 
PROC ARIMA DATA = Trts.Station_27_5Min 
 PLOTS(UNPACK) = ALL; 
 IDENTIFY  
   VAR  = CSF_5MinAvg(1) 
     NLAG = 24; 
 ESTIMATE 
         Q = 2; 
 OUTLIER; 
RUN; 
QUIT; 
 
/*Findings*/ 
*1 Both the MA(1)and MA(2) model OUTLIERS: 26 AND 85; 
 
/*------------REDO THE ANALYSIS FOR 5-MIN WITHOUT OUTLIERS---------------*/ 
DATA Trts.Station_27_5Min_NOL; 
 SET Trts.Station_27_5Min; 
 IF Traffic_Time = '30OCT2009:07:05:00.000'DT  
    OR Traffic_Time = '30OCT2009:12:00:00.000'DT 



Yin, Murray-Tuite   47 

    THEN DELETE; 
RUN; 
 
 
TITLE "5-Min 1st Diff MA(1) NOL Forecast"; 
PROC ARIMA DATA = Trts.Station_27_5Min_NOL 
 PLOTS(UNPACK) = ALL; 
 IDENTIFY  
   VAR  = CSF_5MinAvg(1) 
     NLAG = 24; 
 ESTIMATE 
         Q = 1; 
 FORECAST 
    LEAD = 6 
   OUT = Trts.Station_27_5Min_NOL_MA1_F; 
 
RUN; 
QUIT; 
 
TITLE "5-Min 1st Diff MA(2) NOL Forecast"; 
PROC ARIMA DATA = Trts.Station_27_5Min_NOL 
 PLOTS(UNPACK) = ALL; 
 IDENTIFY  
   VAR  = CSF_5MinAvg(1) 
     NLAG = 24; 
 ESTIMATE 
         Q = 2; 
 FORECAST 
    LEAD = 6 
   OUT = Trts.Station_27_5Min_NOL_MA2_F; 
 
RUN; 
QUIT; 
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APPENDIX B INPUT FILES FOR QUEENSOD MODEL 
  
Master File 
 
QOD Master File - 
I66E OD 5:00:00 

11 100 

5 20 

1 1 

qod_050000\ 

qod_050000\output 

qod1.txt 

qod2.txt 

none 

none 

none 

f050000.txt 

none 

none 

none 

qod10.out 

qod11.out 

qod12.out 

qod13.out 

qod14.out 

qod15.out 

qod16.out 
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Node File 
I66E OD Node 
File 

25 1.0 1.0 

1 0.25 1.75 3 1 0 

2 0.25 1.75 3 1 0 

3 0.25 1.75 3 1 0 

4 0.25 1.75 3 1 0 

5 0.25 1.75 3 1 0 

6 0.25 1.75 2 1 0 

7 0.25 1.75 2 1 0 

8 0.25 1.75 2 1 0 

9 0.25 1.75 2 1 0 

10 0.25 1.75 2 1 0 

11 0.25 1.75 2 1 0 

12 0.25 1.75 2 1 0 

13 0.25 1.75 4 1 0 

14 0.25 1.75 4 1 0 

15 0.25 1.75 4 1 0 

16 0.25 1.75 4 1 0 

17 0.25 1.75 4 1 0 

18 0.25 1.75 4 1 0 

19 0.25 1.75 4 1 0 

20 0.25 1.75 4 1 0 

21 0.25 1.75 4 1 0 

22 0.25 1.75 4 1 0 

23 0.25 1.75 4 1 0 

24 0.25 1.75 4 1 0 

25 0.25 1.75 4 1 0 
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Link File 
1.0 1.0 1.0 1.0 
13 0.77 88 2300 4 0 0 0 0 0 0 0 0 0 0 0 0000011111
14 0.79 88 2300 4 0 0 0 0 0 0 0 0 0 0 0 0000011111
15 0.6 88 2300 4 0 0 0 0 0 0 0 0 0 0 0 0000011111
16 0.77 88 2300 4 0 0 0 0 0 0 0 0 0 0 0 0000011111
17 0.85 88 2300 4 0 0 0 0 0 0 0 0 0 0 0 0000011111
18 1.26 88 2300 4 0 0 0 0 0 0 0 0 0 0 0 0000011111
19 0.57 88 2300 5 0 0 0 0 0 0 0 0 0 0 0 0000011111
20 0.71 88 2300 4 0 0 0 0 0 0 0 0 0 0 0 0000011111
21 0.51 88 2300 4 0 0 0 0 0 0 0 0 0 0 0 0000011111
22 0.69 88 2300 4 0 0 0 0 0 0 0 0 0 0 0 0000011111
23 0.65 88 2300 4 0 0 0 0 0 0 0 0 0 0 0 0000011111
24 0.78 88 2300 4 0 0 0 0 0 0 0 0 0 0 0 0000011111
25 0.49 88 2300 4 0 0 0 0 0 0 0 0 0 0 0 0000011111
12 0.40 88 2300 4 0 0 0 0 0 0 0 0 0 0 0 0000011111
6 1.00 40 1500 1 0 0 0 0 0 0 0 0 0 0 0 0000011111
7 1.00 40 1500 1 0 0 0 0 0 0 0 0 0 0 0 0000011111
16 1.00 40 1500 1 0 0 0 0 0 0 0 0 0 0 0 0000011111
8 1.00 40 1500 1 0 0 0 0 0 0 0 0 0 0 0 0000011111
9 1.00 40 1500 1 0 0 0 0 0 0 0 0 0 0 0 0000011111
21 1.00 40 1500 2 0 0 0 0 0 0 0 0 0 0 0 0000011111
10 1.00 40 1500 1 0 0 0 0 0 0 0 0 0 0 0 0000011111
24 1.00 40 1500 1 0 0 0 0 0 0 0 0 0 0 0 0000011111
11 1.00 40 1500 1 0 0 0 0 0 0 0 0 0 0 0 0000011111
12 1.00 40 1500 2 0 0 0 0 0 0 0 0 0 0 0 0000011111
 
  



Yin, Murray-Tuite   51 

REFERENCES 
Abrahamsson, T. (1998). Estimation of Origin-Destination Matrices Using Traffic Counts - A Literature 

Survey. Laxenburg, Austria. 
Ahmed, M. S. and A. R. Cook (1979). "Analysis of Freeway Traffic Time-Series Data by Using Box-

Jenkins Techniques." Transportation Research Record 722: 1-9. 
Ahmed, S. A. and A. R. Cook (1980). "Time Series Models for Freeway Incident Detection." 

Transportation engineering journal of ASCE 106(Compendex): 731-745. 
Ahmed, S. A. and A. R. Cook (1980). "Time Series Models for Freeway Incident Detection." Journal of 

Transportation Engineering 106: 731-745. 
Alibabai, H. and H. S. Mahmassani (2008). "Dynamic origin-destination demand estimation using turning 

movement counts." Transportation Research Record(2085): 39-48. 
Amin, M. R. and J. H. Banks (2005). "Variation in freeway lane use patterns with volume, time of day, 

and location." Transportation Research Record(1934): 132-139. 
Antoniou, C., M. Ben-Akiva, et al. (2006). "Dynamic traffic demand prediction using conventional and 

emerging data sources." IEE Proceedings: Intelligent Transport Systems 153(Compendex): 97-
104. 

Ashok, K. (1996). Estimation and Prediction of Time-Dependent Origin-Destination Flows. Department 
of Civil and Environmental Engineering. Cambridge, MA, Massachusetts Institute of 
Technology. Doctor of Philosophy: 155. 

Bhattacharjee, D., K. C. Sinha, et al. (2001). "Modeling the effects of traveler information on freeway 
origin-destination demand prediction." Transportation Research Part C: Emerging Technologies 
9(6): 381-398. 

Bikowitz, E. W. and S. P. Ross (1985). "Evaluation and Improvement of Inductive Loop Traffic 
Detectors." Transportation Research Record(1010): 76-80. 

Bottom, J. (2000). Consistent Anticipatory Route Guidance. Department of Civil and Environmental 
Engineering. Cambridge, MA, Massachusetts Institute of Technology. Doctor of Philosophy: 
251. 

Bowman, A. and A. Azzalini (1997). Applied Smoothing Techniques for Data Analysis. Oxford, New 
York, Claredon Press. 

Camus, R., G. E. Cantarella, et al. (1997). "Real-time estimation and prediction of origin-destination 
matrices per time slice." International Journal of Forecasting 13(Copyright 1997, IEE): 13-19. 

Carter, M., H. Rakha, et al. (1999). "Variability of traffic-flow measures across freeway lanes." Canadian 
Journal of Civil Engineering 26: 270-281. 

Cascetta, E. and G. Marquis (1993). "Dynamic estimators of origin-destination matrices using traffic 
counts." Transportation Science 27(4): 363-373. 

Chen, C., J. Kwon, et al. (2003). Detecting Errors and Imputing Missing Data for Single Loop 
Surveillance Systems. the 82nd Annual Meeting of Transportation Research Board. Washington 
D.C. 

Chen, L. and A. D. May (1987). "Traffic Detector Errors and Diagnostics." Transportation Research 
Record 1132: 82-93. 

Chen, Y., X. Qin, et al. (2008). A Hybrid Process of Micro-Simulation and Logistic Regression for Short-
term Work Zone Traffic Diversion. The 87th Annual Meeting of the Transportation Research 
Board. Washington D.C. 

Cheu, R.-L. (1998). Freeway traffic prediction using neural networks. Proceedings of the 1998 5th 
International Conference on Applications of Advanced Technologies in Transportation, April 26, 
1998 - April 29, 1998, Newport Beach, CA, USA, ASCE. 

Cleghorn, D., F. L. Hall, et al. (1991). "Improved Data Screening Techniques for Freeway Traffic 
Management System." Transportation Research Record 1320: 17-23. 

Coifman, B. (1996). "New Methodology for Smoothing Freeway Loop Detector Data: Introduction to 
Digital Filtering." Transportation Research Record 1554: 142-154. 



Yin, Murray-Tuite   52 

Daganzo, C. (1997). Fundamentals of Transportation and Traffic Operations. Oxford, New York, 
Pergamon-Elsevier. 

Davis, G. A. and N. L. Nihan (1991). "Nonparametric regression and short-term freeway traffic 
forecasting." Journal of Transportation Engineering 117(Compendex): 178-188. 

Dhingra, S. L., P. P. Mujumdar, et al. (1993). "Application of time series techniques for forecasting truck 
traffic attracted by the Bombay Metropolitan Region." Journal of Advanced Transportation 
27(Compendex): 227-249. 

Fernandez-Moctezuma, R. J., K. A. Tufte, et al. (2007). Toward management and imputation of 
unavailable data in online advanced traveler information systems. 2007 IEEE Intelligent 
Transportation Systems Conference, 30 Sept.-3 Oct. 2007, Piscataway, NJ, USA, IEEE. 

FHWA. (2005). "Focus on Congestion Relief."   Retrieved August 2, 2010, 
from http://www.fhwa.dot.gov/congestion/. 

Hellinga, B. (1994). Estimating Dynamic Origina-Destination Demands from Link and Probe Counts. 
Department of Civil Engineering. Kingston, Ontario, Queen's of Maryland. Doctor of 
Philosophy: 235. 

Hellinga, B. R. (1994). Estimating Dynamic Origin-Destination Demands from Link and Probe Counts. 
Department of Civil Engineering. Ontario, Queen's University. Doctor of Philosophy: 211. 

Hellinga, B. R. and M. Van Aerde (1998). Estimating dynamic O-D demands for a freeway corridor using 
loop detector data. Canadian Society for Civil Engineering - 1998 Annual Conference, June 10, 
1998 - June 13, 1998, Halifax, NS, Canada, Canadian Society for Civil Engineering. 

Institute of Transportation Engineers (2000). Intelligent Transportation Primer. Washington D.C, Institute 
of Transportation Engineers. 

Ishak, S. and H. Al-Deek (2002). "Performance Evaluation of Short-Term Time-Series Traffic Prediction 
Model." Journal of Transportation Engineering 128(6): 490. 

Jacobson, L. N., N. L. Nihan, et al. (1990). "Detecting Erroneous Loop Detector Data in a Freeway 
Traffic Management System." Transportation Research Record(1287): 151-166. 

Kikuchi, S. and D. Milkovic (1999). "Method to preprocess observed traffic data for consistency. 
Application of fuzzy optimization concept." Transportation Research Record(1679): 73-80. 

Kirby, H. R., S. M. Watson, et al. (1997). "Should we use neural networks or statistical models for short-
term motorway traffic forecasting?" International Journal of Forecasting 13(Copyright 1997, 
IEE): 43-50. 

Kwon, J., C. Chen, et al. (2004). "Statistical methods for detecting spatial configuration errors in traffic 
surveillance sensors." Transportation Research Record 1870: 124-132. 

Lee, S. and D. B. Fambro (1999). "Application of subset autoregressive integrated moving average model 
for short-term freeway traffic volume forecasting." Transportation Research Record 1678: 179-
188. 

Levin, M. and Y. Tsao (1980). "On Forecasting Freeway Occupancies and Volumes." Transportation 
Research Record 773: 47-49. 

May, A. (1990). Traffic Flow Fundamentals. Englewood Cliffs, New Jersey. 
Nihan, N. L. (1997). "Aid to Determining Freeway Metering Rates and Detecting Loop Errors." Journal 

of Transportation Engineering 123(6): 454-458. 
Nihan, N. L. and K. O. Holmesland (1980). "Use of the Box and Jenkins Time Series Technique in 

Traffic Forecasting." Transportation 9: 125-143. 
Nihan, N. L., Y. Wang, et al. (2006). Improving Dual-Loop Truck (and Speed) Data: Quick Detection of 

Malfunctioning Loops and Calculation of Required Adjustments. Seattle, University of 
Washington: 66. 

Okutani, I. and Y. J. Stephanedes (1984). "Dynamic prediction of traffic volume through Kalman filtering 
theory." Transportation Research, Part B (Methodological) 18B(Copyright 1984, IEE): 1-11. 

Ortuzar, J. and L. Willumsen (1994). Modelling Transport. Chichester, New York Wiley. 
Park, E. S., S. Turner, et al. (2003). "Empirical Approaches to Outlier Detection in Intelligent 

Transportation Systems Data." Transportation Research Record 1840: 21-30. 

http://www.fhwa.dot.gov/congestion/�


Yin, Murray-Tuite   53 

Payne, J. H. and S. Thompson (2007). "Malfunction Detection and Data Repair for Induction-Loop 
Sensors Using I-880 Data Base." Transportation Research Record 1570: 191-201. 

Peeta, S. and I. Anastassopoulos (2002). "Automatic real-time detection and correction of erroneous 
detector data with fourier transforms for online traffic control architectures." Transportation 
Research Record 1811: 1-11. 

Ross, P. (1982). "Exponential Filtering of Traffic Data." Transportation Research Record 869: 43-49. 
Ruimin, L. and L. Huapu (2009). Combined neural network approach for short-term urban freeway traffic 

flow prediction. Advances in Neural Networks - ISNN 2009. 6th International Symposium on 
Neural Networks, ISNN 2009, 26-29 May 2009, Berlin, Germany, Springer Verlag. 

Schrank, D. and T. Lomax (2009). 2009 Urban Mobility Report. College Station, Texas, Texas 
Transportation Institute: 43. 

Sheffi, Y. (1985). Urban Transportation Networks:  Equiblibrium Analysis with Mathematical 
Programming Methods. Englewood Cliffs, New Jersey, Prentice-Hall. 

Smith, B. L. (1995). Forecasting Freeway Traffic Flow for Intelligent Transportation Systems 
Applications. Department of Civil Engineering. Charlottesville, University of Virginia. Doctor of 
Philosophy. 

Szeto, W. Y., B. Ghosh, et al. (2009). "Multivariate traffic forecasting technique using cell transmission 
model and SARIMA model." Journal of Transportation Engineering 135(Compendex): 658-667. 

Takezawa, K. (2006). Introduction to nonparametric regression Hoboken, N.J., Wiley-Interscience. 
Tao, Z., H. Lifang, et al. (2010). Nonparametric regression for the short-term traffic flow forecasting. 

2010 International Conference on Mechanic Automation and Control Engineering (MACE), 26-
28 June 2010, Piscataway, NJ, USA, IEEE. 

Taylor, C. and D. Meldrum (1995). Freeway traffic data prediction using neural networks. Pacific Rim 
TransTech Conference. 1995 Vehicle Navigation and Information Systems Conference 
Proceedings. 6th International VNIS. A Ride into the Future, 30 July-2 Aug. 1995, New York, 
NY, USA, IEEE. 

Turner, S. (2004). "Defining and measuring traffic data quality: White paper on recommended 
approaches." Transportation Research Record 1870: 62-69. 

Van Aerde, M., H. Rakha, et al. (2003). "Estimation of Origin-Destination Matrices: Relationship 
between Practical and Theoretical Considerations." Transportation Research Record 1831: 122-
130. 

Van Der Voort, M., M. Dougherty, et al. (1996). "Combining Kohonen maps with ARIMA time series 
models to forecast traffic flow." Transportation Research Part C (Emerging Technologies) 
4C(Copyright 1997, IEE): 307-318. 

Vanajakshi, L. and L. R. Rilett (2004). "Loop detector data diagnostics based on conservation-of-vehicles 
principle." Transportation Research Record(1870): 162-169. 

Weijermars, W. A. M. and E. C. Van Berkum (2006). "Detection of invalid loop detector data in urban 
areas." Transportation Research Record 1945: 82-88. 

Whittaker, J., S. Garside, et al. (1997). "Tracking and predicting a network traffic process." International 
Journal of Forecasting 13(Copyright 1997, IEE): 51-61. 

Yang, H., T. Sasaki, et al. (1992). "Estimation of origin-destination matrices from link traffic counts on 
congested networks." Transportation Research, Part B: Methodological 26(6): 417-417. 

Zhou, X. (2004). Dynamic Origin-Destination Demand Estimation and Prediction for Off-line and On-
line Dynamic Traffic Assignment Operation. Department of Civil and Environmental 
Engineering. College Park, Maryland, University of Maryland. Doctor of Philosophy: 174. 

 
 


	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	Chapter 1 INTRODUCTION
	1.1. Background and Motivations
	1.2. Problem Statement 
	1.3. Objectives of the Project
	1.4. Methodology of the Project
	1.5. Organization of the Report

	Chapter 2 DATA PREPARATION
	2.1. Introduction
	2.2. Previous Studies of Loop Detector Data Error Correction
	2.3. Dataset Description 
	2.4. Data Correction Procedures
	2.4.1. Temporal Correction (TC)
	2.4.2. Spatial Correction using Linear Regression (LR)
	2.4.3. Spatial Correction using Kernel Regression (KR)
	2.4.4. Lane Distribution Correction (LD)

	2.5. Experimental Procedures
	2.6. Experimental Results
	2.6.1. Results of Systematic Evaluation
	2.6.2. Results of Random-Error Evaluation
	2.6.3. Performance of Correction Methods by Time of Day

	2.7. Conclusions 
	2.7.1. Summary of Findings and Practical Recommendations


	Chapter 3 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODEL FOR SHORT-TERM FREEWAY TRAFFIC FLOW FORECASTING
	3.1. Introduction
	3.2. Previous Studies for Traffic Forecasting
	3.3. The Theory of ARIMA Modeling
	3.3.1. Weak Stationarity and Ergodicity
	3.3.2. The White-Noise Process
	3.3.3. The qth Order Moving Average Process – MA(q)
	3.3.4. The pth-order Autoregressive Process- AR(p)
	3.3.5. The Auto Regressive Moving Average Process - ARMA(p,q)
	3.3.6. The Box-Jenkins Modeling Philosophy

	3.4. Modeling the Traffic Flow Series for Interstate 66
	3.4.1. Identification

	3.5. Conclusions and Discussion

	Chapter 4 DYNAMIC ORIGIN-DESTINATION MATRICES ESTIMATION
	4.1. Overview of the OD Estimation Process in QueensOD
	4.2. OD Estimation of Interstate 66 Using QueensOD

	Chapter 5 DISCUSSIONS AND CONCLUSIONS
	APPENDIX A SAS CODE FOR BOX-JENKINS MODELING
	APPENDIX B INPUT FILES FOR QUEENSOD MODEL
	REFERENCES

