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Executive Summary

Transit, touted as a solution to urban mobility problems, cannot match the addictive flexibility of

the automobile. 86.5% of all trips in the U.S. are in personal vehicles (USDOT 2001). A more recent

approach to reduce automobile ownership is through the use of vehicle sharing programs (VSPs). A

VSP involves a fleet of vehicles located strategically at stations across the transportation network.

In its most flexible form, users are free to check out vehicles at any station and return them to

stations close to their destinations. Vehicle fleets can be comprised of bicycles, low emission cars or

electric vehicles. Such systems offer innovative, low-cost, and flexible solutions to the larger mobility

problem and can have positive impacts on the transportation system as a whole by reducing urban

congestion.

To match automobile flexibility, users are free to determine all trip characteristics (where to check-

out and return vehicles, duration of travel and time of travel). This places exceptional logistical

challenges on operators who must ensure demand in the near future is met. Since flow from one

station to another is seldom equal to flow in the opposing direction, the VSP fleet can become

spatially imbalanced. To meet near-future demand, operators must then redistribute vehicles to

correct this asymmetry. The focus of this report is to provide efficient, cost-effective operational

strategies for fleet management.

A stochastic, mixed-integer program (MIP) involving joint chance constraints is developed that

generates least-cost vehicle redistribution plans for shared-vehicle systems such that a proportion of

all near-term demand scenarios are met. The model aims to correct short term demand asymmetry

in shared-vehicle systems, where flow from one station to another is seldom equal to the flow

in the opposing direction. The model accounts for demand stochasticity and generates partial

redistribution plans in circumstances when demand outstrips supply. This stochastic MIP has a

non-convex feasible region that poses computational challenges. To solve the proposed program

two solution procedures are developed. The first procedure is based on enumerating p-efficient

points, used to transform the problem into a set of disjunctive, convex MIPs. A novel divide-and-

conquer algorithm for generating p-efficient points that handles dual-bounded chance constraints

is developed. Our technique has a smaller memory and computational footprint than previously

proposed methods. Since this method can be computationally prohibitive for large shared-vehicle

systems, we develop a faster cone-generation method that assumes that the random demand at

each station is independent. Finally, using an equal-failure apportionment assumption we develop

a bound on the problem that can also be used to generate redistribution strategies.

i
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The developed model and associated solution methods are implemented for a car-sharing system

in Singapore. Historical usage patterns for the system are derived using available data from 2003

till 2006. Five different strategies were implemented for various reliability levels. Several measures

of effectiveness (system reliability, cost of redistribution plans, and dropped demand in simula-

tion studies) are used for comparison of various strategies. These measures demonstrate that the

methods that account for the inherent stochasticity of the demand process consistently outperform

methods that assume known or static demand. Operators employing redistribution plans generated

by considering uncertainty can provide better level-of-service to users. Additionally, the trade-offs

between achieved reliability and redistribution costs are explored for various strategies.
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1. Introduction

Transit, touted as a solution to urban mobility problems, cannot match the addictive flexibility of

the automobile. 86.5% of all trips in the U.S. are in personal vehicles (USDOT 2001). A more recent

approach to reduce automobile ownership is through the use of vehicle sharing programs (VSPs). A

VSP involves a fleet of vehicles located strategically at stations across the transportation network.

In its most flexible form, users are free to check out vehicles at any station and return them to

stations close to their destinations. Vehicle fleets can be comprised of bicycles, low emission cars or

electric vehicles. Such systems offer innovative, low-cost, and flexible solutions to the larger mobility

problem and can have positive impacts on the transportation system as a whole by reducing urban

congestion.

For a user, a shared vehicle reduces cost of ownership without sacrificing flexibility. Vehicles, viewed

as a resource, spend most of their time idle and depreciating in value. More efficient use of this

resource implies lower costs for users. Shared vehicle fleets offer a mechanism for exploiting this

down-time. In addition to cost benefits to individual users, there are system-wide benefits from

a decrease in motor vehicles in the system (a recent European study estimates that one shared

vehicle lead to reduction of between four to 10 privately owned cars (Rydén and Morin 2005);

estimates for North America range from six to 23 cars (Shaheen and Cohen 2007)). These programs

typically have pricing structures that charge based on usage, which has been shown to reduce

travel amongst participants (Shaheen et al. 2003). In essence, a smaller fleet of vehicles offers a

comparable level-of-service to users, and provides system-wide benefits. This concept of pooling

resources has parallels in other sectors, such as air transport (Kuby and Gray 1993, Barnhart and

Schneur 1996, Kim et al. 1999) and consolidated freight systems (Taniguchi et al. 1999, Fusco et al.

2003), for the same reasons.

In addition to being environment-friendly, socially responsible and economical, operators and users

around the world have found VSPs to be profitable. As of 2007, car sharing programs exist in

600 cities around the world (Shaheen and Cohen 2007) and bicycle sharing programs in 102 cities

(Britton 2008). Vélib’, the bicycle sharing program in Paris, has 20,600 bicycles spread over 1,450

stations across the city with an average of 120,000 trips daily (Erlanger 2008).

To match automobile flexibility, VSPs transfer control of vehicles to users. This places exceptional

logistical challenges on operators who must ensure demand in the near future is met. Since flow from

one station to another is seldom equal to flow in the opposing direction, the VSP fleet can become

spatially imbalanced. To meet near-future demand, operators must then redistribute vehicles to
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correct this asymmetry. The focus of this report is to provide efficient, cost-effective operational

strategies for fleet management.

The management of VSP fleets differs from previously studied models in related areas. These

differences preclude the direct application of prior work and motivate the development of problem

specific tools. Firstly, since users determine the trip characteristics, critical system attributes (where

vehicles are checked out and returned, and the duration of lease) are beyond the control of operators.

Secondly, there is a ‘duality’ of demand between vehicles and slots. A successful trip needs a

vehicle available at the origin station and an available docking slot at the destination. A vehicle

checkout reduces vehicle inventory at a station, but increases the slot inventory. This duality has

significant implications and reduces the range of acceptable inventory levels for vehicles. Thirdly,

the inventory is never consumed, but is merely moved. The fleet management strategy involves

correcting imbalances at the various stations.

Past research in vehicle sharing programs has originated from social perspectives of sharing

resources (Matsuura 2003, DeMaio and Gifford 2004, Katzev 2003, Wray 2008), policy considera-

tions (TRB 2005, Shaheen et al. 2004), integration of transit and slow modes (Rodier et al. 2004,

Shaheen et al. 2005, Shaheen and Rodier 2006, Shaheen et al. 2006), travel behavioral implica-

tions (Cervero et al. 2002), challenges in increasing awareness (Dawn Haines 2005), and analyzing

potential market characteristics in terms of demographics, etc. (summarized in Shaheen and Cohen

(2007)). These studies take a demand-side approach.

Supply-side analyses of VSPs are predominantly qualitative and the literature dealing specifically

with fleet management for VSP’s is limited. Barth and Todd (1999) proposed three strategies

to generate redistribution plans. These are based on immediate demand, expected demand and

perfect demand information. The time period looks 20 minutes into the future and uses simulation

to evaluate the redistribution strategies. No details on how redistribution plans are generated are

presented. Barth et al. (2004) studied the redistribution problem, but attempt to shift the burden

of redistribution on users through two mechanisms of ride splitting and joining. Kek et al. (2009)

used an mixed-integer program (MIP) to generate redistribution plans and allocate operator staff to

redistribution and maintenance activities. Their model uses a time-expanded network, with static,

known demand. Unserviced demand is penalized by a penalty cost in the objective function. A

simulation model is used to evaluate the redistribution strategy. In these works, the redistribution

plans are based on static demand.

In this report, the problem of fleet management for shared-vehicle systems is formulated considering

demand uncertainty (Section 2). The management strategy involves anticipative fleet redistribu-

tion that operators initiate to correct short-term demand asymmetry (since flow from one station
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to another is seldom equal to flow in the opposite direction). When operators have inadequate

resources to meet demand, then the model generates partial redistribution plans. The model takes

a form of a stochastic MIP with joint chance constraints. Stochastic programs of this class have

non-convex feasible regions. Two solution methods are presented. One approach to deal with this

non-convexity uses the concept of p-efficient points (PEPs) to transform the problem to a dis-

junctive MIP that is more readily solvable. A divide-and-conquer algorithm to generate PEPs is

designed to reduce the computational burden of existing methods (Section 3). The algorithm can

be applied to any problem with joint chance constraints given that the vector of random variables

is discrete. This contribution transcends the current application. A second cone generation solution

method (Section 3.2), akin to the column generation procedure, can be employed when the demand

at each station is assumed to be independent. Under this limiting assumption, this method pro-

vides quick solutions even for shared systems with large number of stations. Additionally, we derive

an equal-apportionment bound to the problem (Section 4). We compare various redistribution

strategies in a real-world application to a car sharing system in Singapore (Section 5). Extensive

computational experiments and simulation studies show that when the redistribution strategies

developed herein are employed, the system operates at a reliability level that would otherwise be

possible only with capital improvements to the system.

2. Problem Formulation

Given (a) the system configuration (stations, capacities, fleet size), (b) current inventory levels

at each station, (c) relocation costs, and (d) a probabilistic characterization of demand at each

station, we wish to find a least-cost fleet redistribution plan such that most near future demand

scenarios are satisfied.

VSP operators have substantial ITS infrastructure for various functions, including tracking of vehi-

cles for theft prevention, smart cards for member access, vehicle availability across the network,

charging consoles for electric vehicles, payment systems, and traveler information services. This

data-rich environment provides a real-time awareness of the system that can be leveraged for fleet

management. Since individual users decide where and when trips are made, demand at each station

is uncertain from a system perspective. The aim of operators is to serve all demand. However, it is

typically cost-prohibitive to design the system to satisfy all possible demand realizations and oper-

ators can expect demand to outstrip supply in high-demand scenarios. By characterizing demand

probabilistically, as can be done using historical information, operators can quantify the existing

level-of-service. If the desired level-of-service at a station is not met, then a fleet redistribution

action can be initiated to bring the system to an acceptable state.
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The VSP system can be defined on a network of n stations. Each station i has capacity, Ci, the

maximum number of vehicles it can accommodate. The capacity represents parking bays for car-

sharing, docking slots in bike-sharing systems, or charging stations for electric vehicles. The number

of vehicles at station i, termed the station inventory, is denoted by Vi. The cost of relocating vehicles

from station i to station j, i 6= j, is denoted by aij . There is a penalty δ to move each vehicle

between two stations. The system operator has perfect information on available inventories at each

station. The system operator plans for a fixed short-term planning horizon for which demand is

known probabilistically. Redistribution tasks are assumed to be completed before the planning

period commences. At each station i, there are two types of demand processes, one to check out

vehicles, ξ1
i , and the other to return vehicles, ξ2

i . Both ξ1
j and ξ2

j are random variables with known

probability distributions. The operator seeks a least-cost redistribution plan that would make the

system p-reliable during the planning period. That is, the system satisfies all demand at every

station (1, . . . , n), for p proportion of all possible realizations. This can be described by the following

joint-chance constraint.

P











Available vehicles at stn 1≥ ξ1
1 , Available spaces at stn 1≥ ξ2

1

Available vehicles at stn 2≥ ξ1
2 , Available spaces at stn 2≥ ξ2

2
...

...
Available vehicles at stn n≥ ξ1

n, Available spaces at stn n≥ ξ2
n











≥ p. (1)

Equation (1) represents a level-of-service constraint for the operator who seeks a p-reliable system.

To achieve this, the operator looks at available inventory at each station. If the available resources,

both vehicles and free spaces, are adequate to satisfy p-proportion of all possible demand scenarios,

then no further corrective actions are necessary. If the available vehicles are insufficient, then

vehicles can be ‘borrowed’ from adjacent stations. If available spaces are inadequate, then vehicles

can be ‘lent out’ to other stations to free up spaces. Since there are costs involved in these actions,

the operator seeks an optimal method to perform this redistribution.

To derive the level-of-service constraint, we note that the available vehicle inventory at each station

depends on the current inventory and the number of returns and checkouts during the time period.

If the redistribution plan calls for vehicles to be relocated into (or out of) the station, then these

vehicles are assumed to be available (or unavailable) at the start of the planning period. This

assumption is not restrictive, since redistribution tasks can commence well before the planning

period begins. Similarly, the available spaces inventory at each station depends on the current

inventory, the number of returns, and the number of vehicles relocated in and out of the station

during the planning period. Therefore,
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Available vehicles at Stn i =







































Vehicle inventory at i (Vi)
+

Returns at i (ξ2
i )

+
Vehicles relocated to i (

∑

j yji)
−

Vehicles relocated out of i (
∑

j yij)

(2)

Available spaces at Stn i =







































Spaces inventory at i (Ci −Vi)
+

Checkouts at i (ξ1
i )

+
Vehicles relocated out of i (

∑

j yij)

−
Vehicles relocated to i (

∑

j yji).

(3)

It is assumed that redistribution is completed before the planning period. Therefore return (ξ2
i )

and checkout(ξ1
i ) random variables are for the future planning period, while the inventory (Vi) and

redistribution variables (yij) denote operator actions before the planning period commences. The

current vehicle inventory, Vi, is known as is the corresponding spaces inventory, Ci − Vi. Let xij

denote a binary decision variable indicating if vehicles are moved from i to j in anticipation of

future demand. Let yij denote an integer decision variable indicating the number of vehicles moved

from i to j. In terms of decision variables yij, the level-of-service constraint (1), can be written as

P









Vi +
n
∑

j=1

(yji − yij) + ξ2
i ≥ ξ1

i , i = 1, ..n

Ci −Vi +
n
∑

j=1

(yij − yji) + ξ1
i ≥ ξ2

i , i = 1, ..n









≥ p. (4)

Let ξi to be the net demand at a station i for the planning period. That is, ξi = ξ1
i − ξ2

i . The two

types of demand (vehicles and spaces) exhibit duality (reduction of one type implies an increase

of the other), so the net demand ξi encodes both types of demand in one random variable and

represents the imbalance between demand for vehicles and checkouts. For a particular time period,

if the realization of ξi is positive, there are more checkouts than returns. Similarly, if ξi is negative,

there are more returns than checkouts.

The level-of-service constraint (4) cannot be met for every demand realization. For example, in

scenarios where the available resources outstrip demand, this constraint is infeasible. To recover

partial redistribution plans that help operators make the best possible use of available resources

(though still shy of the desired level-of-service), phantom vehicle and space variables are introduced.

For each station, let wi be the number of phantom vehicles and zi be the number of phantom

spaces. Additionally, let γ be a large penalty cost that forces the use of phantom resources only if
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necessary. The variables wi and zi relax the level-of-service constraint as shown in constraint (6).

This relaxation allows the model to generate partial redistribution plans and maintains feasibility

even if resources are inadequate. The optimal fleet redistribution plan can be formulated as a

chance constrained model with desired reliability p (CCM-p) as follows.

(CCM− p) min
n
∑

i=1

n
∑

j=1

(aijxij + δyij) +
n
∑

i=1

γ (wi + zi) , (5)

s.t. P









Vi +
n
∑

j=1

(yji − yij) +wi ≥ ξi, i = 1, . . . , n

Ci −Vi +
n
∑

j=1

(yij − yji) + zi ≥−ξi, i = 1, . . . , n









≥ p, (6)

n
∑

j=1

yij ≤ Vi i = 1, . . . , n, (7)

n
∑

j=1

yji ≤Ci −Vi i = 1, . . . , n, (8)

yij ≤M ·xij i = 1, . . . , n, j = 1, . . . , n, (9)

yij,wi, zj ∈Z+ i = 1, . . . , n, j = 1, . . . , n, (10)

xij ∈ [0,1] i = 1, . . . , n, j = 1, . . . , n. (11)

The objective (5) represents the fixed cost for relocating vehicles, the cost of moving additional

vehicles, and the penalty costs for utilizing phantom resources. Fixed cost between of redistribution

two stations can be based on distance. The operator seeks to minimize the total cost of redistri-

bution. The probabilistic level-of-service constraint (6) states that the redistribution plan must

result in inventories that satisfy p proportion of all demand scenarios in the planning horizon. If

available resources are insufficient, then this constraint is relaxed using phantom resources. There

are capacity constraints (7) that limit the number of vehicles relocated out of a station to be no

greater than the vehicles available at the start of the planning period. Similarly, there are capacity

constraints (8) for slots at a station stating that the number of vehicles relocated to a station does

not exceed the number of slots available. Constraints (9) relates the decision variables. All decision

variables are non-negative integer valued (10), except xij which is binary (11).

Program CCM-p is a stochastic MIP for determining the optimal redistribution plan to satisfy p

proportion of demand. In situations where available resources are inadequate to match anticipated

demand, the program yields a partial redistribution plan. In this case, the phantom resources

are utilized (wi > 0 or zi > 0) and the system is no longer p-reliable. The true reliability must

be recomputed as shown in Section 3.1.2. If phantom resources are not utilized, the joint chance
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constraint (6) states that the probability that demand (in terms of vehicles and slots) exceeds

supply is no greater than 1− p.

Unless the joint distribution of ξ is log-concave, this stochastic MIP has a non-convex feasible

region, making it computationally challenging to solve. The next section presents a specialized

technique for a solution that deals with this non-convexity. This technique applies when the random

vector is only on the right-hand side (RHS) and is discrete as is the case in this application.

3. Solving Program CCM-p

CCM-p is a stochastic MIP with joint chance constraints. In general these programs are difficult to

solve, but since the random vectors are discrete and appear only in the RHS of the constraints, a

specialized technique involving p-efficient points (PEPs) can be employed. Two solution procedures

are presented. In the first method (Section 3.1), the main idea is to transform the non-convex

feasible space to a disjunctive set of convex spaces. This transformation leads to a family of MIPs,

one for each convex set. A single PEP characterizes one such convex set by substituting the chance

constraint by linear constraints. A PEP is formally defined shortly, but generally speaking, a PEP

is the smallest possible (non-dominated) vector for which the joint chance constraint is valid. For

example, if v is a PEP, then the chance constraint P(Ax ≥ ξ) ≥ p can be substituted by a linear

constraint Ax ≥ v, since v represents a realization of ξ that ensures that the chance constraint is

met (see Figure 1). Solving the family of MIPs yields a set of solutions, the best amongst which is

optimal for the original non-convex program.

To generate the family of MIPs, the set of PEPs needs to be enumerated. When the dimension

of the random vector is large, enumerating PEPs can be problematic, since the set of PEPs can

be very large. Once the set of PEPs is enumerated, the family of MIPs is solved using existing

MIP solvers. While this method is not new, our contribution is a PEP enumeration algorithm that

aims to address the major bottleneck in the enumeration phase of the algorithm. The proposed

divide-and-conquer procedure is more efficient that existing methods (Prékopa et al. 1998, Prékopa

2003, Beraldi and Ruszczyński 2002). Additionally, we extend the PEP concept to dual-bounded

chance constraints.

The second solution method (Section 3.2) reduces the computational burden of PEP enumeration

but makes a limiting assumption on the independence of the random vector. The main idea is

similar to column generation where only necessary columns (or PEPs) that improve the objective

are generated. The master problem is a convexified linear approximation of the CCM-p. The simplex

multipliers from the master problem are used in the subproblem to direct the PEP enumeration

phase of the algorithm.
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The idea of PEPs was first proposed by Prékopa (1990) who also presented ways to deal with the

chance constraint if the marginal distribution of the random vector is log-concave (Prékopa 1995).

Beraldi et al. (2004) documents an application. Prékopa et al. (1998) presented a nested algorithm

for generating PEPs. The main idea is to recursively explore the search space while keeping certain

dimensions fixed. Beraldi and Ruszczyński (2002) proposed two enumeration schemes, backward

and forward, along with hybrid schemes that attempt to avoid complete enumeration of PEPs under

some restrictive conditions on the properties of the random vector. They also derived conditional

bounds that aid in determining if a candidate vector is a PEP. Dentcheva et al. (2002) proposed

hybrid methods, called convexification and cone generation methods, with the aim of avoiding

explicit PEP enumeration. Saxena et al. (2008) combined the enumeration scheme with the solution

phase for the same reasons. They introduced the concept of p-inefficiency to reduce constraints in

the resulting program.

For a joint chance constraint of the form P(Ax ≥ ξ) ≥ p, where ξ is discrete, the enumeration of

PEPs is challenging, since the search space includes all possible realizations of the discrete ran-

dom vector. The performance of any enumeration scheme depends on (a) the dimensionality of

the random vector, (b) the support of the random vector, (c) complexity of evaluating the joint

distribution function, and (d) the value of p. Increasing the dimensionality causes a combinatorial

explosion in the search space. Increasing the support of the random vector also increases the search

space, although not combinatorially. All enumeration schemes must evaluate the joint distribu-

tion function repeatedly. Thus, even moderate complexity in calculating the distribution function

negatively impacts performance. Lastly, if the value of p is closer to either 0 or 1, the number of

possible PEPs is considerably less than if it is close to 0.5, since there are fewer combinations along

different dimensions of the random vector.

3.1. Solution based on PEP Enumeration

Since a MIP needs to be solved for each PEP, the solution procedure is designed to reduce the

number of MIPs that need to be solved using some problem specific properties. First, since complete

redistribution plans are preferable to partial ones, conditions for which a particular PEP will yield

a guaranteed sub-optimal (partial) solution are derived in section 3.1.2. If a complete redistribution

plan has been found, these infeasibility conditions help in screening PEPs that will yield partial

solutions, thereby reducing the number of MIPs to be solved. Second, a zero-cost redistribution

plan implies that no imbalance exists, so this forms the absolute lower bound on the problem.

Third, since the set of PEPs Sp is large, it may preclude a complete enumeration and alternate

termination criteria can be used to settle on an acceptable solution. A partial enumeration provides
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a solution that is not guaranteed to be optimal. The algorithm for solving CCM-p, given the

inventories Vi, i = 1, . . . , n at each station and the desired reliability level p, is as follows.

Algorithm ENUM-p:

Step 0. Initalization. Initialize the objective value of best solution zopt =∞. Set the PEP counter

k = 1. Let CR be a boolean flag that is true if a complete redistribution plan exists. Set CR =

false.

Step 1. PEP Enumeration. Generate the set of all PEPs Sp (see Section 3.1.1).

Step 2. For the k-th PEP (uk, vk)∈ Sp proceed to Step 3.

Step 3. Feasibility Test. If CR = true, check all n + 2 feasibility conditions (14), (15), and (16)

(see section 3.1.2) for (uk, vk). If feasible or if CR = false, proceed to Step 4; otherwise, set

k = k +1 and return to Step 2.

Step 4. Solve Deterministic Equivalent. For a PEP (uk, vk), solve the program (5)–(11) by

replacing the joint chance constraint (6) by the two linear constraints

Vi +
n
∑

j=1

(yji − yij) +wi ≥ vk and (12)

−

(

Ci −Vi +
n
∑

j=1

(yij − yji) + zi

)

≤ uk. (13)

Step 5. Solution Check. If the objective value zk < zopt, then zopt = zk and save the redistribution

plan corresponding to zk as optimal. If this redistribution plan does not use phantom resources,

set CR =true. If zk = 0, absolute lower bound reached, terminate.

Step 5. If termination criteria are met, stop; else k = k +1 and return to Step 2.

3.1.1. A Divide-and-Conquer PEP Enumeration Algorithm Since all past develop-

ments of PEPs have dealt with random vectors having an upper or lower bound but not both, the

concept is extended to the case when the random vector is dual-bounded as is the case in constraint

(6). Essentially, the procedure is developed for chance constraints of the form P(A′x≤ ξ ≤Ax)≥ p,

but also applies to the classical chance constraint P(Ax ≥ ξ) ≥ p. The principle difference in the

treatment of dual-bounded constraints is that PEPs are expressed as vector pairs and the cumula-

tive distribution function is replaced by a function g(u, v) that handles dual bounds. Barring these

distinctions, the following development emulates concepts proposed by Prékopa (2003) and others

(Beraldi and Ruszczyński 2002, Dentcheva et al. 2002).

Definition 1. For p ∈ (0,1) a vector pair(u, v), u ∈ Z
n and v ∈ Z

n, is said to be a p-efficient

point (PEP) if g(u, v)≥ p, where g(u, v) = P(ui ≤ ξi ≤ vi, ∀i = 1, .., n) and there exists no vectors y

and z such that g(y, z)≥ p, z ≤ v, and y ≥ u.
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For dual-bounded chance constraints, the definition employs a function g(u, v) instead of the cumu-

lative distribution function to ensure that the lower bound is also met as shown in Figure 1.

ξ
u

f(ξ)

p

(a)Standard definition when Ax≥ u⇒ P(Ax≥ ξ)≥ p

ξ
u v

f(ξ)

p

(b)Modified dual-bounded definition when A′x≤ u and

Ax≥ v ⇒ P(A′x≤ ξ ≤Ax)≥ p

Figure 1 Illustration of PEP definitions for a single dimension

For this modified dual-bounded case, we first derive a bound that will serve to test if a candidate

vector is a PEP similar to the bounds based on the conditional marginal distribution derived by

Beraldi and Ruszczyński (2002).

Proposition 1. A vector pair (u, v) is PEP if and only if l(u) = u and h(v) = v, where

li(u) = argmax{k | g(u, v)≥ p,ui = k} , i = 1, .., n and

hi(v) = argmin{k | g(u, v)≥ p, vi = k} , i = 1, .., n

for g(u, v) = P(ui ≤ ξi ≤ vi, ∀i = 1, .., n).

Proof. Bounds ⇒ PEP. The proof is by contradiction and is shown for the lower bound only.

Similar arguments can be applied to the upper bound. Assume a pair of vectors (u, v), where

l(u) = u and h(v) = v. Take a vector pair (y, v) that is PEP, such that y ≤ u with yk < uk for

an arbitrary dimension k. Since g(u, v) monotonically decreases in u, g(y, v)≥ g(u, v) since y ≤ u.

The bounds l(u) = u and h(v) = v imply that g(u, v) ≥ p. Therefore, (y, v) cannot be PEP, since

there exists a larger vector u such that g(u, v)≥ p. Now assume another vector pair (y, z) that is a

PEP, such that y ≥ u. For an arbitrary dimension k, where yk > uk, construct a new vector w such

that wi = ui,∀i, i 6= k and wi = yi, i = k. We know g(y, z) ≥ p as (y, z) is a PEP. Since y ≥ u and

the function g(w,z) monotonically decreases in w, g(w,z)≥ p. Therefore, lk(u)≤ yi, which implies

(y, z) is not a PEP, contradicting our assumption.
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PEP ⇒ Bounds. Follows from the definition, since if (u, v) is PEP, then there exists no larger

vector y such that (y, v) is PEP and no smaller vector z such that (u, z) is PEP. �

This bound is used to check if a candidate vector is PEP. The concept of the proposed enumeration

algorithm is that instead of a linear traversal suggested by previous methods, we exploit the

monotonic property of the cumulative distribution function (or g(u, v)) to allow us to focus on areas

of the search space that contain the p-frontier where g(u, v) = p. The function g(u, v) monotonically

increases with v and monotonically decreases with u. The search space can be construed as a

lattice, since the random vector takes only discrete values. Any arbitrary hyper-rectangle within

the search space can be defined by two ‘corner’ points. The ‘low’ corner point, consisting of the

smallest possible v component and the largest possible u component within the hyper-rectangle

and is denoted by (us, vs). The ‘high’ corner point consists of the largest v and the smallest u

components within the hyper-rectangle and is denoted by (ue, ve). All lattice points within the

hyper-rectangle are candidate PEPs. Due to the monotonic nature of g(u, v), the lowest possible

value within the hyper-rectangle is g(us, vs) and the highest possible value it can take is g(ue, ve).

Based on the two corner points, three cases may occur as illustrated in Figure 2.

Case 1. If g(ue, ve) < p, then the entire hyper-rectangle can be ignored, since it is guaranteed not

to contain a PEP.

Case 2. If g(us, vs) > p then the hyper-rectangle is ‘above’ the p-frontier. The only possible PEP

is the corner point (us, vs). If the corner point is PEP, then it is the sole PEP in the hyper-

rectangle, since it would dominate all other candidate solutions. If it is not PEP, then no other

PEPs exist within the hyper-rectangle, since they would be dominated by (us, vs).

Case 3. If g(us, vs)≤ p≤ g(ue, ve), then the hyper-rectangle may contain one or more PEPs and is

marked for further exploration.

Large swaths of the search space can be disregarded quickly using Cases 1 and 2. When the hyper-

rectangle is marked for further exploration (Case 3), it can be partitioned arbitrarily with the same

cases applied recursively. With each iteration, the partitions get smaller until they can no longer

be divided. The terminal partition is a hyper-rectangle with at most two lattice points along any

dimension. For an n-dimensional random vector, enumeration of PEPs in the terminal partition

could, in the worst-case, require examination of 22n candidate vector pairs. The PEPs in this case

can be completely enumerated using existing enumeration schemes (Prékopa et al. 1998, Prékopa

2003, Beraldi and Ruszczyński 2002).

This procedure obviates the need for complete enumeration by focusing on areas of the search

space that contain the p-frontier where g(u, v) = p. Only two evaluations of g(u, v) are needed to
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Figure 2 Three cases for arbitrary hyper-rectangles in 2-dimensions

determine if a candidate hyper-rectangle contains the p-frontier. Complete enumeration is saved

for portions of the search space that are promising. The procedure has a small memory footprint,

since the algorithm only keeps track of two vector pairs for each hyper-rectangle. While Prékopa’s

procedure (Prékopa et al. 1998) nests the search along the different dimensions of the random

vector, here we nest in the domain of each component of the vector.

The recursive PEP enumeration algorithm is presented for a random vector ξ = (ξ1, ξ2, . . . , ξr). Each

component of the random vector ξi can take values between li and ui.

Step 0. Initialization. Define the starting corner vector pairs (us, vs) and (ue, ve), where us
i =

ve
i = ui and vs

i = ue
i = li. Initialize the set of PEPs Sp = ∅ and p the desired probability level.

Step 1. p-Frontier check. For two vector pairs (us, vs) (start) and (ue, ve) (end) if g(us, vs)≤ p≤

g(ue, ve) then proceed to Step 2, otherwise, terminate.

Step 2. Partition. Along an arbitrary dimension k, k = 1, ...,2r, determine a scalar wk that par-

titions the hyper-rectangle defined by (us, vs) and (ue, ve) into two non-empty, non-overlapping

hyper-rectangles. If no partition exists, then go to Step 4.

Step 3. Recurse. If k ≤ r, then construct s = (ue
1, u

e
2, . . . ,wk, . . . , u

e
k). Go to Step 1 first with the

vector pairs (us, vs), (s, ve) and then again with the vector pairs (s, vs), (ue, ve). If k > r, then

construct s = (ve
1, v

e
2, . . . ,wk, . . . , v

e
r) and go to Step 1 first with vector pairs (us, vs), (ue, s) and

then with (us, s)(ue, ve).

Step 4. Enumerate. For each candidate vector pair (u, v) in the hyper-rectangle, compute the

conditional bounds l(u) and h(v). If l(u) = u and l(v) = v, add to set of PEPs Sp = Sp ∪ (u, v).

Stop.
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This procedure terminates with the set Sp required in the solution procedure of CCM-p (Section

3.1).

3.1.2. Reducing Computational Effort Conditions that provide a quick test on whether

a PEP (u, v) will provide a sub-optimal solution (without solving the MIP) are derived. These

conditions are based on the premise that the cost of a partial redistribution plan always exceeds that

of a complete redistribution plan, since the phantom resources (the decision variables wi and zi)

are utilized with a high penalty (γ). As the solution algorithm involves determining redistribution

for a series of PEPs, if a complete plan has been found (that is not necessarily optimal), then all

successive PEPs that lead to partial solutions can be safely ignored. A partial plan is used only

when resources are outstripped by demand and operators cannot cover p-proportion of demand.

These conditions utilize the physical signifance of a PEP pair (u, v). vi represents the number of

vehicles (if positive) needed at station i for the desired level-of-service and ui, if negative, represents

the required number of spaces.

At any station the total number of spaces and vehicles needed cannot exceed the capacity. This

condition is termed the capacity infeasibility condition and can be expressed as

−min(ui,0) +max(vi,0) > ci i = 1, . . . , n. (14)

These capacity constraints are ‘local’, since they are applied to each station. There are ‘global’

supply infeasibility conditions when the available inventory in the system is insufficient for the

operator to meet anticipated demand. These supply infeasibilities can be expressed as

n
∑

i=1

Vi <
n
∑

i=1

max(vi,0) and (15)

n
∑

i=1

(Ci −Vi) < −
n
∑

i=1

min (ui,0) . (16)

Eq. (15) states that the total inventory of vehicles available across the network is exceeded by total

anticipated demand across the entire network. Eq. (16) states the same principle for spaces.

When the model suggests partial redistribution, the system operates at reliability levels that are

lower than the desired p. The true system reliability in this case can be computed as follows. Let

(u∗, v∗) be the PEP for which the (partial) redistribution plan is optimal. Let w∗

i and z∗

i be the

optimal values of the phantom resources. Then, the true system reliability p̂ can be expressed as

p̂ = P (u∗

i +w∗

i ≤ ξi ≤ v∗

i − z∗

i , i = 1, . . . , n) (17)

= g(u∗ +w∗, v∗ − z∗)
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3.2. A Cone Generation Method

When demand is assumed to be independent, the cone generation method proposed by Dentcheva

et al. (2000, 2002) can be employed. The method can generate redistribution plans quickly and

is suitable for large systems where PEP enumeration is prohibitive. The master problem is an

approximation of CCM-p and the subproblem generates p-efficient points as needed. The basic

idea is similar to column generation where each PEP can be viewed as a column. The solution

algorithm presented here mirrors the procedure of Dentcheva et al. (2000, 2002) but proposes a

new subproblem to deal with a dual-bounded chance constraint.

Algorithm CGM-p:

Step 0. Initialization. Choose an arbitrary starting PEP pair (u0, v0) and set J0 = 0, k = 0.

Step 1. Master problem. Solve the convexified linear program

min
n
∑

i=1

n
∑

j=1

(aijxij + δyij) +
n
∑

i=1

γ (wi + zi) , (18)

Vi +
n
∑

j=1

(yji − yij) +wi ≥
∑

j∈Jk

µjv
j
i i = 1, . . . , n, (19)

Ci −Vi +
n
∑

j=1

(yij − yji) + zi ≥−
∑

j∈Jk

µju
j
i i = 1, . . . , n, (20)

∑

j∈Jk

µj = 1, (21)

n
∑

j=1

yij ≤ Vi i = 1, . . . , n, (22)

n
∑

j=1

yji ≤Ci −Vi i = 1, . . . , n, (23)

yij ≤M ·xij i = 1, . . . , n, j = 1, . . . , n, (24)

xij , yij,wi, zj ≥ 0 i = 1, . . . , n, j = 1, . . . , n, (25)

µj ≥ 0 j ∈ Jk (26)

Let λk
v and λk

u be the simplex multipliers of constraints (19) and (20) respectively.

Step 2. Upper bound. Calculate the bound for the dual function over the set of generated PEPs.

d̄(uk, vk) = min
j∈Jk

(λk
v)

Tvj − (λk
u)T uj (27)

Step 3. Solve subproblem. Find the PEP pair (uk+1, vk+1) by solving

min
{

(λk
v)

Tvk+1 − (λk
u)T uk+1 | g(uk+1, vk+1)≥ p

}

, (28)

and compute d(uk, vk) = (vk+1)T λk
v − (uk+1)Tλk

u.



Nair and Miller-Hooks: Fleet Management for Vehicle Sharing Operations 15

Step 4. Termination Condition. If d(uk, vk) = d̄(uk, vk) then stop; otherwise set Jk+1 = Jk ∪ (k+

1), k = k +1 and goto Step 1.

The subproblem in Step 3 has a nonlinear constraint g(u, v)≥ p. When demand at each station is

assumed to be independent, this constraint can be written as

ln(g(uk, vk)) =
n
∑

i=1

ln(gi(u
k
i , v

k
i ))≥ lnp (29)

If each component of ξ takes values between li and bi, the subproblem can formulated as an MIP.

Denote yijk as a binary decision variable that is one if for the i-th dimension of ξ, ui = j and vu = k

and zero otherwise. For a given set of multipliers (λk
u, λk

v) and a desired probability level p, the

subproblem can be written as

min
n
∑

i=1

bi
∑

j=li

bi
∑

k=li

(λv
i k−λu

i j)yijk (30)

subject to

n
∑

i=1

bi
∑

j=li

bi
∑

k=li

ln(qijk)yijk ≥ ln(p) (31)

bi
∑

j=li

bi
∑

k=li

yijk = 1 i = 1, . . . , n (32)

yijk ∈ [0,1], (33)

where qijk = gi(j, k) = P(j ≤ ξi ≤ k).

4. A Failure Apportionment Bound

If the systemwide reliability level can be translated to a component-level measure, the joint chance

constraint can be decoupled to give linear constraints. These constraints provide a bound on the

original problem. The VSP stations can be viewed as being ‘in series’, since the unserviced demand

at any station implies lower reliability. A system that is p-reliable has an acceptable failure rate of

at most 1−p. The Boole-Bonferroni inequality (Prékopa 1995) implies that the sum of the station

failure rates cannot exceed the systemwide failure rate.

n
∑

i=1

(1− pi)≤ 1− p. (34)

Under an equal apportionment of failure we have 1− pi = (1− p)/n. Decoupling the joint chance

constraint (6) results in n joint constraints:
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pi

(1 − pi)/2(1 − pi)/2

ξi

−

(

Ci − Vi +
n
∑

j=1

(yij − yji) + zi

)

Vi +
n
∑

j=1

(yji − yij) + wi ci−ci

Figure 3 Demand scenarios covered by the chance constraint at one station

P









−

[

Ci −Vi +
n
∑

j=1

(yij − yji) + zi

]

≤ ξi

Vi +
n
∑

j=1

(yji − yij) +wi ≥ ξi









≥ pi i = 1, . . . , n, (35)

where pi = (n− 1+ p)/n. This set of n joint chance constraints can be further reduced by allowing

the acceptable failure rate to be divided amongst unserviced demand for vehicles and unserviced

demand for spaces. This is shown in Figure 3.

This results in 2n chance constraints:

P

(

Vi +
n
∑

j=1

(yji − yij) +wi ≥ ξi

)

≤
1− pi

2
i = 1, . . . , n, (36)

P

(

−

[

Ci −Vi +
n
∑

j=1

(yij − yji) + zi

]

≤ ξi

)

≤
1− pi

2
i = 1, . . . , n. (37)

In terms of the inverse marginal distribution, the constraints (36) and (37) can be derived as

Vi +
n
∑

j=1

(yji − yij) +wi ≥ F−1
ξi

(

1 + pi

2

)

i = 1, . . . , n, (38)

−

[

Ci −Vi +
n
∑

j=1

(yij − yji) + zi

]

≤ F−1
ξi

(

1− pi

2

)

i = 1, . . . , n. (39)

The solution to the MIP defined by the objective (5) and constraints (7), (8), (9), (10), (11), (38),

(39) provides a bound on the optimal solution.

5. Application

The Intelligent Community Vehicle System (ICVS) operated by the Honda Motor company in

Singapore City, Singapore was a car-sharing system with 14 stations mainly in the downtown region

and one at the Changi Airport. The system was also studied by Kek et al. (2009). The program

is no longer operational. Data from the program available from March 2003 through January 2006
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documents 45,570 trips. Across the 14 stations, the system had an assumed capacity of 202 spaces,

with 94 vehicles spread around the network. The characteristics of the fleet are not known and are

assumed to be homogeneous. The trip characteristics are summarized in Figures 4 and 5.

The realized demand process is assumed to be the true demand process. This implies that extreme

demand scenarios are not represented in the inputs (since they are never observed). The demand-

supply interaction is ignored and treated as exogenous and inelastic. Each day is divided into

four time periods when redistribution is considered. During each time period at each station, the

number of vehicles checked out and the number returned were found to be Poisson distributed. Of

all 112 input distributions (one for each station and each period during the day for checkouts and

returns), 28 failed the χ2 test due to the low number of observations. Sample distributions for two

stations are shown in Figure 6.

For each station j and time period t, the Poisson vehicle checkout rate (λ1
tj) and the Poisson vehicle

return rate (λ2
tj) are determined. Since the random variable ξi in program CCM-p is the difference

of the two, the distribution of the difference is needed. When two random variates are Poisson

distributed with means λ1
tj and λ2

tj , their difference ξtj is Skellam distributed with pmf

P(ξtj = k) = e−(λ1
tj+λ2

tj)

(

λ1
tj

λ2
tj

)k/2

Ik(2
√

λ1
tjλ

2
tj), (40)

where Ik(z) is the modified Bessel function of the first kind. Since this is a discrete distribution,

F−1
ξ (p) exists when we define the inverse function as the infimum and when 0 < p < 1. Figure 7

shows the Skellam distribution for some sample values.

5.1. Computational Experiments

Nine strategies for redistribution are tested. A do-nothing (DN) approach is when operators relo-

cate only once before the start of each day but do not redistribute during the day. An expected

value approach (AVG) generates redistribution based on the expected value of demand. The PEP

enumeration based solution approach (ENUM-p) is used to generate strategies for three values of

p (0.8, 0.9, and 1.0). Since the support of the Skellam distribution is (−∞, . . . ,−1,0,1, . . . ,∞), for

the last case p is very close to, but not equal, to 1.0. The cone generation method (CGM-p) is run

for p = 0.8,0.9. The failure apportionment bounds (FAB-p) presented in Section 4 are computed for

two values of p: 0.8 and 0.9. The proposed procedures (DN, AVG, ENUM-p, CGM-p, FAB-p) were

implemented in MATLAB 2009a, java, and CPLEX 11.2. All experiments were run on an Intel

Xeon processor running at 3.00 GHz with 16GB of RAM. Since for ENUM-p, the PEP enumeration

is needed only once, the PEP enumeration procedure was allowed to run for 24 hours for each stage
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Figure 4 Characteristics of the IVCS Singapore System
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Figure 6 Actual and Theoretical Demand Distributions for 2 Stations
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Figure 7 The Skellam distribution function for sample λ combinations.

State Time Period (hrs) # PEPs p = 0.8 # PEPs p = 0.9
1 0≤ t < 9 50.10 9.41
2 9≤ t < 12 37.60 22.68
3 12≤ t < 18 64.60 173.80
4 18≤ t < 24 77.20 202.00

Table 1 Number of PEPs for each stage (in millions)

using p = 0.8 and 0.9 (for p = 1.0, there is only one PEP). The number of PEPs generated for each

period are shown in Table 1.

Redistribution is performed at the start of each time period. A demand scenario is randomly

generated and the fleet inventories are adjusted to serve as the start point for the next time period.

Since the set of PEPs is extremely large, the run time for ENUM-p experiments at each time period

was restricted to one hour. Consequently, the solutions presented next are not guaranteed to be

optimal. Since demand at each station is assumed to be independent, the results from CGM-p

(where independence is forced) can be directly compared with other strategies. The main measures

of effectiveness are actualized or true reliability, relocation cost (without the penalties for phantom

resources, since this is what operators will experience) and the number of dropped demands.

Results are presented for a 2-day period. Figures 8 and 9 show the actualized reliability p̂ versus

the relocation costs for the various time periods and various strategies. The relocation costs are

computed as the value of the objective function minus the penalties for using the phantom resources.

For ENUM-p methods, the family of solutions is also depicted.

When resources are adequate (for example, Figures 8(a) and 8(b)), the CGM-p methods with p =

0.8 or 0.9 provide the best actualized reliability through the use of redistribution. When inventories

are low (Figure 8(d)), a complete redistribution plan is only achieved by the CGM-0.8 strategy.
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Under these circumstances, all other solutions show drops in true reliability and represent partial

redistribution plans. For the same reliability level p, CGM methods outperform ENUM since all

PEPs are not explored for ENUM and optimality not guaranteed. When the plans are complete,

the FAB-p solutions cost more than the ENUM-p and CGM-p strategies (for a comparable p).

When the plans are partial, this need not be the case, since the penalty costs are not included.
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Figure 8 Relocation strategies for various states: Day 1

Figure 10 shows the number of vehicles redistributed for the same two-day period for various states.

The FAB strategies are generally more expensive to implement, since they require a greater number

of relocations.

To determine the value of considering stochasticity in generating redistribution plans, simulation is

employed. The strength of a particular system configuration can be tested over a range of demand
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Figure 9 Relocation strategies for various states: Day 2

realizations. The number of unserviced users, or dropped demand, is measured for each realization.

Given a random realization of demand ξ̄, the dropped demand for vehicles dv and spaces ds can

be computed as

dv =
n
∑

i=1

max(0, ξ̄i −Vi), (41)

ds = −
n
∑

i=1

min(0, ξ̄i +Ci −Vi). (42)

These quantities are computed for all the strategies and time periods for two days over 100,000

realizations. Results are summarized in Tables 2 and 3. The ENUM-0.8, ENUM-0.9, and CGM-p

strategies do not drop any demand for a high proportion of realizations regardless of resource
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Figure 10 Number of Vehicles relocated

availability. When resources are adequate, at the start of the day, all strategies do well. During later

time periods, the AVG, ENUM-1.0, and DN approaches are more likely to leave demand unserviced.

The FAB strategies perform as well as ENUM, but these are more expensive to implement. Tables

2 and 3 also shows the worst-case demand realization for each algorithm. The ENUM-0.8 and

ENUM-0.9 consistently drop fewer number of demand requests for vehicles and spaces compared

to other methods even in the worst-case realization, indicative of robustness of the redistribution

strategy.

The ENUM-1.0 performs poorly in most scenarios. Since the resource requirements to satisfy such

a high level-of-service are extraordinary, the redistribution plan that the model achieves in this case

is always partial, since phantom variables must be utilized. The actualized reliability achieved for

this case is very low as demonstrated by the simulation experiments. The solutions yield additional

insights on system characteristics. Since the PEPs have a physical interpretation, for the PEP

that resulted in the best known solution, the system resource requirements can be computed (see

Table 4). These numbers directly relate the desired level-of-service with the resources. For example,

in Day 1, to achieve a systemwide reliability of 0.9 requires 77 vehicles during the 18:00-24:00

Hours (Hrs) time period for the CGM and ENUM methods. A reliability of 0.8 requires eight

fewer vehicles for the same period. These values are contingent on starting inventories, thus, their

purpose is illustrative. In a similar vein, the stations which have frequent local infeasibilities can be

the target of capacity improvements, since local infeasibilities indicate recurrent imbalance in flows.

Since only a subset of PEPs were solved to determine the ENUM-p strategies, the solutions for

the ENUM-0.8 and ENUM-0.9 strategies are not guaranteed to be optimal in these experiments.
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Time
(Hrs)

Algorithm Obj. Value Partial
Redistri-
bution

Probability
of no
dropped
vehicle
demands

Average
number of
dropped
vehicle
demands

Number of
dropped
vehicle
demands
for
worst-case

Probability
of no
dropped
spaces

Average
number of
dropped
space
demands

Number of
dropped
space
demands
for
worst-case

0-9 DN 0.00 - 0.998 0 2 1 0 3
AVG 0.00 - 0.998 0 2 1 0 3
FAB-0.9 38817.33 No 0.998 0 3 1 0 2
FAB-0.8 36291.29 No 1 0 2 1 0 2
ENUM-1.0 11340000 Yes 0.998 0 2 1 0 3
ENUM-0.9 11590.26 No 1 0 3 1 0 3
ENUM-0.8 10749.17 No 1 0 2 1 0 3
CGM-0.9 10250.17 No 0.999 0 2 1 0 3
CGM-0.8 10077.12 No 0.999 0 2 0.999 0 3

9-12 DN 0.00 - 0.487 0.8 8 0.391 1.16 9
AVG 1495.01 - 0.754 0.34 7 0.423 1.06 9
FAB-0.9 11335.09 No 0.988 0.01 4 0.99 0.01 4
FAB-0.8 5294.02 No 0.997 0 3 0.986 0.02 4
ENUM-1.0 10431279.00 Yes 0.487 0.8 8 0.391 1.16 9
ENUM-0.9 3626.02 No 0.985 0.02 4 0.97 0.04 5
ENUM-0.8 3959.04 No 0.998 0 3 0.822 0.24 6
CGM-0.9 5294.04 No 0.99 0.01 4 0.944 0.07 5
CGM-0.8 1668.03 No 0.989 0.01 4 0.817 0.24 6

12-18 DN 0.00 - 0.121 2.94 16 0.219 2.42 16
AVG 592.01 - 0.323 1.66 14 0.328 1.75 14
FAB-0.9 1294089.00 Yes 0.773 0.4 11 0.882 0.18 8
FAB-0.8 728025.10 Yes 0.854 0.24 10 0.829 0.27 9
ENUM-1.0 23240000.00 Yes 0.121 2.94 16 0.226 2.38 16
ENUM-0.9 519310.10 Yes 0.852 0.24 10 0.773 0.37 9
ENUM-0.8 30574.13 No 0.866 0.21 7 0.835 0.26 9
CGM-0.9 2028554.00 Yes 0.954 0.06 7 0.71 0.5 10
CGM-0.8 6043.06 No 0.934 0.09 7 0.69 0.53 10

18-24 DN 0.00 - 0.022 4.86 18 0.024 4.88 20
AVG 4175.05 - 0.156 2.68 15 0.22 2.34 17
FAB-0.9 795102.30 Yes 0.924 0.11 7 0.477 1.12 13
FAB-0.8 372069.20 Yes 0.919 0.12 7 0.48 1.1 13
ENUM-1.0 21350000.00 Yes 0.022 4.86 18 0.026 4.78 20
ENUM-0.9 226865.20 Yes 0.912 0.13 7 0.473 1.13 13
ENUM-0.8 80984.16 Yes 0.841 0.25 9 0.602 0.75 11
CGM-0.9 1014639.00 Yes 0.950 0.07 7 0.398 1.39 14
CGM-0.8 13413.16 No 0.906 0.13 8 0.458 1.14 12

Table 2 Dropped demand for spaces and vehicles in 100,000 simulation runs for Day 1

CGM-p strategies on the other hand are optimal since demand at each station is assumed to be

independent.

In summary, a comparison of fleet management strategies based on stochastic assumptions offers

greater reliability than plans based on static methods. Redistribution strategies based on the

proposed stochastic MIP also weather scenarios in which demand outstrips supply. In simulation

studies, the CGM-p, ENUM-0.9 and ENUM-0.8 strategies demonstrate robustness over all sampled

demand scenarios.
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Time
(Hrs)

Algorithm Obj. Value Partial
Redistri-
bution

Probability
of no
dropped
vehicle
demands

Average
number of
dropped
vehicle
demands

Number of
dropped
vehicle
demands
for
worst-case

Probability
of no
dropped
spaces

Average
number of
dropped
space
demands

Number of
dropped
space
demands
for
worst-case

0-9 DN 0.00 - 0.998 0 3 1 0 2
AVG 0.00 - 0.998 0 3 1 0 2
FAB-0.9 38817.33 No 0.998 0 3 1 0 1
FAB-0.8 36291.29 No 1 0 1 1 0 1
ENUM-1.0 11340000.00 Yes 0.998 0 3 1 0 2
ENUM-0.9 11590.25 No 1 0 1 1 0 2
ENUM-0.8 10575.22 No 0.999 0 3 1 0 2
CGM-0.9 10250.17 No 0.999 0 3 1 0 2
CGM-0.8 10077.12 No 0.999 0 3 0.999 0 2

9-12 DN 0.00 - 0.965 0.04 4 0.332 1.33 11
AVG 0.00 - 0.965 0.04 4 0.332 1.33 11
FAB-0.9 4950.03 No 0.995 0.01 3 0.998 0 3
FAB-0.8 1125.02 No 0.999 0 3 0.989 0.01 4
ENUM-1.0 10430000.00 Yes 0.965 0.04 4 0.332 1.33 11
ENUM-0.9 0.00 No 0.999 0 2 0.975 0.03 5
ENUM-0.8 2542.03 No 0.999 0 2 0.979 0.02 4
CGM-0.9 2501.02 No 0.991 0.01 4 0.958 0.05 5
CGM-0.8 1641.03 No 0.989 0.01 4 0.908 0.12 6

12-18 DN 0.00 - 0.494 1.05 11 0.089 3.95 21
AVG 1125.01 - 0.495 1.05 11 0.115 3.5 20
FAB-0.9 1273059 Yes 0.896 0.16 7 0.846 0.24 9
FAB-0.8 711480.10 Yes 0.947 0.08 7 0.78 0.36 10
ENUM-1.0 23240000.00 Yes 0.494 1.05 11 0.089 3.95 21
ENUM-0.9 573418.10 Yes 0.946 0.08 6 0.789 0.35 10
ENUM-0.8 12392.19 No 0.888 0.17 8 0.841 0.25 10
CGM-0.9 3012119 Yes 0.963 0.05 6 0.671 0.59 11
CGM-0.8 8908.14 No 0.955 0.06 6 0.632 0.68 11

18-24 DN 0.00 - 0.052 3.76 20 0.005 7.28 27
AVG 4577.07 - 0.33 1.6 16 0.083 3.8 23
FAB-0.9 656147.20 Yes 0.917 0.12 10 0.485 1.09 15
FAB-0.8 300664.20 Yes 0.927 0.11 9 0.4 1.39 17
ENUM-1.0 21350000.00 Yes 0.052 3.76 20 0.005 7.28 27
ENUM-0.9 229417.20 Yes 0.914 0.12 10 0.536 0.94 15
ENUM-0.8 19441.17 No 0.844 0.24 11 0.629 0.69 13
CGM-0.9 1018299.00 Yes 0.952 0.07 9 0.395 1.42 17
CGM-0.8 13766.12 No 0.91 0.13 10 0.501 1.04 16

Table 3 Dropped demand for spaces and vehicles in 100,000 simulation runs for Day 2

6. Conclusions

Fleet management strategies that explicitly consider demand stochasticity are developed for vehicle

sharing systems. In developing these management strategies, no assumptions are made on the

specific operational characteristics and demand processes of a particular system. However, system

specific attributes can be incorporated with relative ease. For example, if a sharing system allows

advance reservations of vehicles, then the demand process splits into a static known component and

an uncertain one. By adjusting start inventories at each stage, the static portion can be guaranteed
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Day 1 Required Vehicles Required Spaces Local Infeasibility
Strategy p 0-9 9-12 12-18 18-24 0-9 9-12 12-18 18-24 0-9 9-12 12-18 18-24

AVG - 2.49 8.97 25.73 27.15 14.55 6.72 17.79 10.47 0 0 0 0
FAB 0.8 22 47 76 84 74 51 69 54 0 0 8 6
FAB 0.9 19 41 71 79 68 48 63 48 0 0 5 2

ENUM 1.0 137 149 245 240 161 141 228 207 13 13 13 13
ENUM 0.9 21 45 71 77 67 46 66 54 0 0 5 2
ENUM 0.8 20 41 62 69 61 48 62 51 0 0 0 0

CGM 0.9 17 39 77 77 53 32 51 34 0 0 0 0
CGM 0.8 14 36 63 69 46 26 41 28 0 0 0 0

Day 2 Required Vehicles Required Spaces Local Infeasibility
Strategy p 0-9 9-12 12-18 18-24 0-9 9-12 12-18 18-24 0-9 9-12 12-18 18-24

AVG - 2.49 8.97 25.73 27.15 14.55 6.72 17.79 10.47 0 0 0 0
FAB 0.8 22 47 76 84 74 51 69 54 0 0 8 6
FAB 0.9 19 41 71 79 68 48 63 48 0 0 5 2

ENUM 1.0 137 149 245 240 161 141 228 207 13 13 13 13
ENUM 0.9 22 48 71 76 65 46 68 57 0 0 5 3
ENUM 0.8 21 45 63 70 60 44 63 52 0 0 0 0

CGM 0.9 17 39 76 77 53 32 53 34 0 0 0 0
CGM 0.8 14 36 63 69 46 26 41 28 0 0 0 0

Table 4 Systemwide resource needs based on various strategies with the number of stations with local capacity

infeasibilities

service.

The main contributions of this work are in formulating the VSP fleet management problem as a

stochastic MIP. The approach taken herein overcomes the limitations of prior works that assume

static or known demand. The proposed framework quantifies the systemwide level-of-service offered

based on a probabilistic characterization of demand. Two solution techniques, one based on enu-

meration and the other on cone generation, are presented. For the enumeration based technique,

the PEP enumeration algorithm improves on existing tools by using a divide-and-conquer paradigm

that is able to quickly eliminate areas of the search space that are guaranteed not to contain PEPs.

Our technique has a smaller memory and computational footprint than previously proposed meth-

ods. Additionally, the concept of PEP is extended to include dual-bounded chance constraints. The

second solution technique assumes independence of the random vector. An equal-failure appor-

tionment bound is also derived. Under these limiting assumptions (independence or equal failure

probability), exact solutions can be quickly obtained. In an application of the proposed framework

to a system in Singapore, the operational strategies were found to be robust in simulation studies.

Additionally, trade-offs between redistribution costs and level-of-service were explored.

Future work along this direction could relax some assumptions, namely immediate fleet relocation,

incorporate staff availability to perform redistribution, and tackle heterogeneous fleets. One might

also study the assignment and routing of relocation teams to carry out fleet redistribution.
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Beraldi, P., A. Ruszczyński. 2002. The probabilistic set-covering problem. Operations Research 956–967.

Britton, F. 2008. Public bike system inventory. URL http://www.ecoplan.org/.

Cervero, Robert, Nina Creedman, Madhav Pai, Muhammad Pohan. 2002. City carshare: Assessment of short-

term travel-behavior impacts. Tech. rep., Institute of Urban and Regional Development, University of

California, Berkely.

Dawn Haines, Ian Skinner. 2005. The marketing of mobility services. Tech. rep., Institute for European

Environmental Policy.

DeMaio, P., J. Gifford. 2004. Will smart bikes succeed as public transportation in the United States? Journal

of Public Transportation 7(2) 1–15.
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