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1 Introduction 

Bridges are vulnerable links of transportation networks. An extreme event, such as an 

earthquake, can damage hundreds of bridges in a given region. Following an earthquake, 

department of transportation (DOT) officials visit and visually inspect (INDOT, 2000) each 

bridge to decide whether the bridge should remain closed, be reopened to emergency vehicles 

only, or be reopened to all traffic. However, these visual inspections require tremendous 

resources, both physical and human, and are sequential in nature, requiring long periods of time 

to assess the integrity of the entire bridge stock in a given region. During the inspection period, 

closures disrupt traffic operations on the roadway network, reducing the mobility of goods and 

services that translates into potentially significant economic and societal losses. During visual 

inspections, indicators of damage such as the extent of cracking, length and width of cracks, loss 

of concrete cover, and buckling of reinforcing bars are noted. Based on these indicators and 

largely engineering judgment a decision is made whether the bridge should remain closed or be 

reopened, using a conservative approach in order to maintain a high level of public safety. 

However, if the approach is overly conservative, many bridges that are structurally safe will 

remain closed, severely disrupting operations on the roadway network. Rapid, yet rigorous 

estimation of the residual capacity of bridges subjected to earthquake ground shaking could 

allow transportation agency officials to expedite decision-making and the inspection process 

following an event by using the residual capacity estimates to triage visual bridge inspection. 

Furthermore, bridges with a significant percentage of residual capacity, e.g. greater than 90% of 

the undamaged, could be reopened in lieu of a detailed visual inspection, thereby reducing the 

economic and societal impacts of earthquake events. 

Past research that examined the post-earthquake capacity of bridge columns, which are the most 

vulnerable elements of bridges (Berry and Eberhard 2004), demonstrated that reinforced concrete 

bridge columns designed following modern design specifications, such as Caltrans Seismic 

Design Criteria (SDC) (2006), retain a significant percentage of their undamaged vertical load-

carrying capacity even after several cycles of lateral loading (Mackie and Stojadinovic 2005, 

Terzic and Stojadinovic 2010). For example, Terzic and Stojadinovic (2010) experimentally 

demonstrated that a ¼-scale bridge column subjected to 4% drift retained 80% of its undamaged 

vertical load-carrying capacity.  A number of studies (Tasai 1999, Tasai 2000, Kato and Ohnishi 
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2001, Elwood and Moehle 2005) have investigated vertical load capacity degradation of 

reinforced concrete columns. However, these studies developed analytical models on rectangular 

building columns having mostly shear degradation during seismic excitation. For columns 

possessing dominant flexural behavior, a highly detailed modeling using finite element methods 

has been shown to simulate the residual capacity with high fidelity, but these models are resource 

intensive to develop and computationally intensive to run. However, there has not yet been an 

attempt to develop a practical and efficient method for accurately and efficiently estimating the 

residual capacity of flexure-dominated bridge columns so that the permissible traffic load can be 

determined.  

2 Objective of Research 

The aim of this study was to develop a practical, mechanics-based method for estimating the 

residual axial load capacity of modern, flexure-dominated bridge columns given structural 

demands.  It was assumed the structural demands can be obtained either through instrumentation 

installed on the bridge or through simulation. Finite element modeling of experimentally tested 

bridge columns was conducted to verify the adequacy of highly detailed structural analysis 

methods. Once the accuracy of existing, highly detailed structural analysis methods was 

established, a simplified, mechanics-based method was developed for estimating the residual 

vertical capacity of flexure-dominated reinforced concrete columns given a particular demand 

(e.g., drift ratio). The fidelity of the practical method was assessed using experimental data from 

Terzic and Stojadinovic (2010).  Following validation of the practical method, a sensitivity 

analysis of the method was performed to understand the relative importance of the parameters on 

the estimation of residual axial capacity to determine whether further simplifications are 

possible.  

3 Scope 

In this study, the focus was on developing a practical method for estimating the residual axial 

load capacity of flexure-dominated, single-column bridge bents designed according to modern 

design requirements and specifications (Caltrans SDC 2006). Validation utilized the results of 

past experimental studies on single cantilever bridge columns performed by Terzic and 

Stojadinovic (2010).  Estimating the residual axial load capacity of shear dominated columns 
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was also important, and there exist a number of scholarly studies (Tasai 1999, Tasai 2000, Kato 

and Ohnishi 2001, Elwood and Moehle 2005), but developing a practical model for shear 

dominated columns was outside the scope of the present study.  

4 Significance 

Following an earthquake, the residual traffic capacity of damaged bridges on the network needs 

to be estimated rapidly to reduce the economic impacts due to bridge closures. A practical 

method to accurately estimate the residual axial load capacity of bridge columns using 

mechanistic relationships, rather than using complex finite element modeling techniques, can 

facilitate a rapid post-event assessment of residual capacity and thus permissible traffic load. 

This practical method will allow Department of Transportation officials to triage visual bridge 

inspections, thus allowing for more efficient utilization of human and physical resources and 

reducing the likelihood of unnecessary bridge closures and thus traffic disruption. Furthermore, 

the practical and computationally efficient method developed in this study can be adopted by 

other researchers to provide a fundamental link between earthquake demand and permissible 

traffic flow for assessing the impact of regional hazards on transportation networks for disaster 

planning and loss estimation.  

5 Background 

The performance of reinforced concrete bridge columns during earthquakes has been 

investigated by a number of researchers over the past five decades (e.g., Munro et al. 1976, 

Kunnath et al. 1997, Lehman and Moehle 2000, Henry and Mahin 1999, and Moyer and 

Kowalsky 2001). The common objectives of these studies was to understand damage sustained 

(e.g., type and extent of cracking, reinforcement buckling, reinforcement fracture) for a given 

level of earthquake demand (e.g., drift ductility and rotation). Although many elements of the 

bridge are vulnerable to earthquake-induced damage, the bridge bent columns were the focus of 

these studies because failure of the columns can lead to complete collapse of the bridge (Berry 

and Eberhard 2004). By using the results of these experimental studies, analytical models on 

reinforced concrete bridge columns have been developed and new design recommendations have 

been proposed (e.g., Hachem et al. 2003, Berry and Eberhard 2004). Despite numerous 

experimental and analytical studies on the seismic performance of columns, only a few studies 
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(Tasai 1999, Tasai 2000, Kato and Ohnishi 2001, Elwood and Moehle 2005, Mackie and 

Stojadinovic 2005, Terzic and Stojadinovic 2010) have critically examined the post-earthquake 

or “residual” axial load capacity of reinforced concrete columns. The studies of Stojadinovic 

(2005, 2010) in particular have focused on assessing the permissible traffic load of damaged 

bridge columns through both experimental hybrid simulation and highly detailed finite element 

modeling. 

Axial load capacity degradation of reinforced concrete columns has been studied analytically by 

a number of researchers (Tasai 1999, Tasai 2000, Kato and Ohnishi 2001, Elwood and Moehle 

2005). However, these studies developed analytical models on rectangular building columns 

having mostly shear degradation during seismic excitation. Tasai (1999, 2000) proposed an 

analytical model to estimate the residual axial load capacity of building columns based on truss-

arch mechanisms where the bond stresses and hoop stresses are used to compute truss and arch 

forces. It is assumed that the truss mechanism forms after the generation of dominant shear 

cracks. The need for the bond and hoop stresses at every loading instant makes it impractical to 

estimate residual axial load capacity of damaged reinforced concrete columns. Kato and Ohnishi 

(2001) developed an empirical model using 132 rectangular reinforced concrete column 

specimens to find the deflections at which the axial load capacity is lost. Elwood and Moehle 

(2005) used a shear-friction model to estimate the residual axial load capacity of reinforced 

concrete building columns that have experienced shear failure during earthquakes. The model 

takes into account the frictional forces on an idealized diagonal shear crack plane. The effective 

coefficient of shear friction at axial failure is estimated using the results of past experiments on 

column specimens. Although these past studies developed models to estimate residual axial load 

capacity of reinforced concrete columns, these models are not capable of estimating the residual 

axial capacity of flexure-dominated bridge columns because they are either based on shear crack 

mechanisms or use experimental data from rectangular building column specimens.  

The study by Terzic and Stojadinovic (2010) in particular is one of the few studies that provides 

experimental data on the residual capacity of reinforced concrete bridge columns subjected to 

cyclic lateral loading via hybrid simulation techniques. In this experimental study, three bridge 

column specimens representing prototype highway overpass bridges designed according to 

modern design guidelines (Caltrans SDC 2006) were subjected to two-phase testing. The first 
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phase was bilateral quasi-static testing, where the specimens were displaced up to a pre-

determined level of displacement ductility. The second phase was the axial compression of the 

laterally damaged specimens, which was applied until the specimens failed.  One additional 

specimen was also tested only by axial compression to determine the undamaged capacity of 

column specimens. Each specimen was tested until it reached a ductility level that falls into one 

of the damage states, except for the collapse damage state, which are commonly used in 

performance-based earthquake engineering. Definitions of these damage states are described by 

HAZUS (FEMA 2003) and presented in Table 1. The most widely used quantitative definitions, 

based on the column ductility level and column drifts corresponding to each HAZUS damage 

state, are presented in Table 2. 

Table 1. Definitions of damage states by HAZUS (FEMA, 2003) 

Damage States Definitions 

None  No bridge damage. 

Slight/Minor  
Minor cracking and spalling to the abutment, cracks in shear keys 
at abutments, minor spalling and cracks at hinges, minor spalling 
at the column (damage requires no more than cosmetic repair), or 
minor cracking to the deck. 

Moderate  
Any column experiencing moderate (shear cracks) cracking and 
spalling (column structurally still sound), moderate movement of 
the abutment (<2 inches), extensive cracking and spalling of 
shear keys, any connection having cracked shear keys or bent 
bolts, keeper bar failure without unseating, rocker bearing failure 
or moderate settlement of the approach. 

Extensive  
Any column degrading without collapse, shear failure (column 
structurally unsafe), significant residual movement at 
connections, major settlement approach, vertical offset of the 
abutment, differential settlement at connections, shear key failure 
at abutments. 

Complete  
Any column collapsing and connection losing all bearing support, 
which may lead to imminent deck collapse, tilting of substructure 
due to foundation failure. 
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Table 2. Ductility limits for each damage states 

Damage State Column Ductility 
(Choi et al. 2004) 

Column Drift 
(Basoz and Mander 1999) 

None 0<μ<1 0<Δ/L<0.01 

Slight/Minor 1<μ<2 0.01<Δ/L<0.025 

Moderate 2<μ<4 0.025<Δ/L<0.05 

Extensive 4<μ<7 0.05<Δ/L<0.075 

Complete 7<μ 0.075<Δ/L 

 

The results of the experimental study by Terzic and Stojadinovic (2010) demonstrated that the 

residual traffic capacity of bridge columns does not correlate well with the seismic damage.  

Figure 1 shows the degradation of axial load-carrying capacities of the four specimens tested in 

this experimental study. In the testing, the specimen was loaded until a ductility level of 1.5 

suffered minor cracking, which falls into the “slight” damage state based on damage state 

definitions provided in Table 1 and Table 2. The specimen was loaded until a ductility level of 

3.0 suffered wider horizontal and vertical cracks and spalling of concrete at the bottom of the 

column, which falls into the “moderate” damage state. The specimen was loaded until a ductility 

level of 4.5 had extensive yielding of steel and spalling of concrete in the core region at the 

bottom of the column, therefore falling into the “extensive” damage state. The results presented 

in Figure 1 suggest that even bridge columns with extensive lateral damage are able to carry 

axial traffic loads up to approximately 80% of the original axial load capacity. From the results 

of this experimental study, it is seen that bridge columns designed following modern design 

requirements might maintain a significant amount of their axial load capacity even with the 

presence of moderate to extensive damage. 
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Figure 1. Degradation of axial load-carrying capacity of laterally damaged columns (Terzic and 
Stojadinovic 2010) 

6 Finite element modeling 

The residual axial capacity of a reinforced concrete bridge column can be determined through 

numerical analysis performed on the detailed finite element models of the columns. A finite 

element model of the prototype reinforced concrete bridge columns was developed and 

numerical earthquake simulations were performed in this study to obtain the axial capacity of 

columns. The results of the numerical simulations were compared to the experimental results 

(Terzic and Stojadinovic 2010) to demonstrate the computational difficulty of finite element 

modeling in calculating the residual capacity and therefore the need for a simple model that can 

be used to rapidly estimate the residual load capacity of bridge columns following earthquakes. 

The finite element model is developed using OpenSees (McKenna 1997), which is a finite 

element software for simulating the seismic response of structural systems.  

The finite element modeling details of bridge columns are shown in Figure 2. The finite element 

model was developed for a prototype column of a single-column-bent overpass bridge as 

illustrated in Figure 2a. The column was modeled using force-based fiber elements in OpenSees 

and the bridge slab and the deck are modeled using rigid elements, as shown in Figure 2b. The 
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fiber elements are connected to each other through five integration points. The fiber 

configuration of a cross-section is presented in Figure 2c. In this configuration, the core region of 

the section consists of 24 fibers, and the cover region consists of 88 fibers. Each reinforcing bar 

is represented by a single fiber. The concrete and reinforcing steel bar were modeled using the 

available material stress-strain relationships in Opensees. For this study, the Concrete02 material 

model was used to model the concrete and the ReinforcingSteel material model was used to 

model the reinforcing bars. The material properties for the confined region of the concrete were 

calculated using the material model proposed by Mander et al. (1988).  

 

 

Figure 2. Finite element modeling details: (a) prototype bridge column; (b) fiber-element model 
of the column; (c) fiber configuration of a cross section 

 

The finite element model of the bridge columns investigated in this study was validated using the 

experimental study on circular bridge columns performed by Terzic and Stojadinovic (2010). In 

this experimental study, three cantilever column specimens were first subjected to bilateral cyclic 

loading up to a pre-determined level of displacement ductility and then axially loaded until the 

specimens failed. During the lateral loading, a constant 100 kips of axial load, which is 

approximately 10% of the nominal capacity of the specimens, was maintained to consider the 

dead and live loads. One additional specimen was only loaded axially in order to obtain the axial 

capacity of an undamaged reinforced concrete column. The geometric properties and 

reinforcement details of the specimens tested in this experimental study are presented in Figure 

3. The column specimens had an effective height of 64 inches and a diameter of 16 inches. The 
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cross-section consisted of 12 No. 4 reinforcing bars and W3.5 continuous spiral steel transverse 

reinforcement, which was located from inside of the column with a clear cover of 0.5 inch.  

 

Figure 3. Geometry and reinforcement details of specimens (Terzic and Stojadinovic, 2010): (a) 
elevation profile; (b) cross section (A-A) 

The material properties for concrete and reinforcing steel bars are provided in Table 3.  

Table 3. Material properties of specimens 

Property 
Unit 

Specimen 
Base 0 Base 15 Base 30 Base 45 

Concrete      
Concrete compressive strength at 28 
days, fc 

ksi 5.48 5.05 4.96 5.09 

Concrete strain at maximum strength, εc0 - 0.003 0.003 0.003 0.003 
Concrete crushing strength, fcu ksi 3.79 3.76 3.72 3.76 
Concrete strain at crushing strength, εcu - 0.022 0.024 0.024 0.024 
Reinforcing steel bars      

Yield strength of reinforcing bars, fy 
ksi 
 70.7 70.7 70.7 70.7 

Initial modulus of elasticity, Es ksi  29000 29000 29000 29000 
Ultimate strength of reinforcing bars, fu ksi 120 120 120 120 
Strain at initial strain hardening, εsh - 0.01 0.01 0.01 0.01 
Strain at peak stress - 0.12 0.12 0.12 0.12 
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The numerical earthquake simulations of finite element models were performed with the same 

bilateral loading history used in experimental testing ((Terzic and Stojadinovic, 2010).  The 

comparison of lateral force-displacement response of the specimen Base 45 to the results of the 

numerical simulations of finite element model of the same specimen is presented in Figure 4. 

The results show that the model is capable of predicting the lateral response of bridge columns in 

both major directions, X and Y, with reasonable accuracy.   

 

Figure 4. Lateral force-displacement response for specimen Base 45: (a) in X direction; (b) in Y 

direction 

Following the lateral loading phase in the numerical simulation, the analytical models were 

loaded with an incremental axial load until the specimens failed, as it was performed in the 

experimental testing. This axial loading phase, which is called pushdown analysis, facilitates the 

generation of axial force axial displacement relationships for finite element models of column 

specimens. Figure 5 presents the comparison of the results of the pushdown analysis to the 

experimental results for four specimens modeled in this study. The maximum axial force 

observed in the axial force-axial displacement results is the residual axial capacity of the 

specimen. The results show that the numerical simulation of the finite element models of bridge 

columns is able to predict the residual axial capacity of the bridge column with reasonable 

accuracy (i.e., less than 10% error). The error of residual axial capacity in specimen Base 15 

(Figure 5b) is slightly higher than those of other specimens, which is mainly due to the residual 
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drift observed before the axial loading phase in specimen Base 15, while no residual load is 

observed before the axial loading phase in other specimens and the finite element model was not 

able to successfully simulate the effects of residual drifts. 

 

 

Figure 5. Axial force-displacement relationship for finite element modeling and experimental 
results for specimens: (a) Base 0; (b) Base 15; (c) Base 30; (d) Base 45 
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7 Practical method 

A practical mechanics-based method is proposed for estimating the residual axial load capacity 

of damaged reinforced concrete bridge columns. The flowchart of this method is presented in 

Figure 6. Based on this method, the two input demand parameters are utilized by several 

mechanics-based models. These input demand parameters are: (1) the maximum displacement at 

the column top observed during the earthquake ground shaking, and (2) the residual 

displacement at the column top at the end of the earthquake ground shaking. In the mechanics-

based model, the residual axial load capacity of concrete and reinforcing bars in a column section 

are calculated and are summed to obtain the residual axial capacity of the column, same as the 

axial capacity calculation of undamaged columns. The residual axial capacity of a column 

section, Pr, is therefore calculated according to: 

 r c sP P P= +  (1) 

where cP  is the residual axial load capacity of the concrete, and sP  is the residual axial load 

capacity of the reinforcing steel bars.  Each individual task on the flowchart is described in detail 

in the following subsections. It should be noted that the derivations given in these subsections are 

made for single circular bridge columns and for bilateral loading; however, similar formulations 

can also be used for the residual axial load capacity calculations for other cross-section types and 

different loading patterns. 

 

Figure 6. Flowchart of the practical method 
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7.1 Determination of the uncrushed area of the column 

During the lateral loading, compressive strain at the outermost fibers of reinforced concrete 

sections might exceed the crushing strain value of concrete, and therefore these crushed regions 

become unable to carry further loads. Therefore, the axial load that can be carried by the column 

decreases. The uncrushed area of the reinforced concrete section can be calculated using 

sectional analysis based on force equilibrium at the maximum lateral displacement. Figure 7 

presents the stresses and strains of the concrete and reinforcing steel bars at the maximum 

displacement to calculate the uncrushed area. In this figure, P and M are the axial load and 

moment on the section at the maximum lateral drift, c is the neutral axis depth, x is the depth of 

the uncrushed region from the neutral axis, cuε  is the crushing strain of the concrete, maxφ is the 

curvature of the section at the maximum displacement, 1β  is the ratio of depth of rectangular 

block to depth of neutral axis, cf is the compressive strength of concrete, and 1f  to 7f represent 

the stresses at the reinforcing steel bars located at the same level. The depth of the uncrushed 

region, x, is calculated through an iterative process using the force and moment equilibrium on 

the cross section according to: 

 ,
1

0.85
m

i bar i c c
i

P f A f A
=

= +∑  (2) 

 ,
1

0.85
m

i bar i i c c c
i

M f A y f A y
=

= +∑  (3) 

where m  is the number of reinforcing steel bar layers in the column section, ,s iA  is the sum of 

the area of reinforcing bars at the ith level of the cross-section, cA is the area of the compression 

zone of the equivalent concrete stress block, iy  is the distance from a reinforcing bar level to the 

centroid of the gross section, and cy is the distance from the centroid of the compression zone 

area of the equivalent concrete stress block to the centroid of the gross section. 
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Figure 7. Equilibrium and compatibility diagram at the maximum displacement 

 

The maximum curvature, which is used to find the strain configuration, is calculated based on 

the inelastic deformation of bridge columns, as illustrated in Figure 8. Based on the inelastic 

deformation of bridge columns, the curvature at the maximum drift, maxφ , is the sum of the yield 

curvature, yφ  and the plastic curvature, pφ , as follows: 

 max y pφ = φ + φ  (4) 

The yield curvature in Equation 4 can be computed according to Priestley et al. (1996): 

 y
y D

λ
φ =

ε
 (5) 

where λ  is taken as 2.45 for spiral columns (Berry and Eberhard 2004), yε is the yield strain of 

reinforcing steel bar, and D  is the diameter of column. The plastic curvature, pφ , in Equation 4 

is calculated according to: 

 p
p

pL
θ

φ =  (6) 
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where pL  is the plastic hinge length, which can be calculated according to Paulay and Priestley 

(1992): 

 0.08 0.15 0.3p y b y bL L f d f d= + ≥  (7) 

where L is the length of the column, yf  is the yield strength of reinforcing bars, and bd is the 

diameter of reinforcing bars. In Equation 6, pθ  is the plastic rotation of the column calculated 

using: 

 θ

2

p
p

pL
L

∆
=
 

− 
 

 (8) 

where p∆  is the plastic displacement. The maximum displacement, max∆ , can be defined as the 

summation of the yield displacement, y∆ , and the plastic displacement, p∆ , based on the 

deflected shape of the column given in Figure 8. Therefore, p∆ can be calculated using:   

 p max y∆ = ∆ −∆  (9) 

where y∆ is the yield displacement calculated according to Priestley et al. (1996): 

 
2

3
y

y

Lφ
∆ =  (10) 
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Figure 8. Inelastic deformation of a bridge column (adapted from Priestley et al. 1996) 

 

The moment resulting from the axial load and the lateral displacement is calculated based on the 

force equilibrium on the column, shown in Figure 9 and using the following equation: 

 M P FL= ∆ +  (11) 

where F is the lateral load at which maximum displacement occurs.  

 

Figure 9. Force equilibrium on the column 
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The equivalent concrete block stress and the reinforcing bar stresses at the maximum 

displacement are computed based on stress-strain material models. The material models for 

concrete and steel used in this study are presented in Figure 10. For the concrete, Mander’s 

(1988) stress-strain model (see Figure 10a) was used, and for reinforcing steel bars a bilinear 

material model was assumed (see Figure 10b). The Mander stress-strain model computes the 

compressive strength of the confined concrete, ccf ′ , according to: 

 7.94 22.254 1 1.254l l
cc c

c c

f ff f
f f

 ′ ′
′ ′= + − −  ′ ′ 

 (12) 

where cf ′ is the compressive strength of concrete and lf ′ is the effective lateral confining stress 

calculated using: 

 l e lf k f′=  (13) 

 0.5l s yhf f= ρ  (14) 

where ek is a confinement effectiveness coefficient and typically taken as 0.95 for circular 

sections (Priestley et al. 1996), and sρ  is the ratio of confining spiral steel bar to the volume of 

confined concrete, calculated using: 

 
2

4

4

sp s sp
s

s
s

A d A
d sd s

π
ρ = =

π
 (15) 

where spA is the area of confining spiral steel bar, sd is the diameter of spiral bar, and s is the 

center-to-center spacing of spiral bar.  
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Figure 10. Material models used in the practical method: (a) concrete; (b) reinforcing steel 

 

7.2 Residual axial capacity of concrete region of column 

Once the crushing depth of the concrete is determined through sectional analysis, the residual 

axial load capacity of the concrete part of the column section can be calculated. If the crushing 

depth remains in the cover region, that is, there is no crushing in the core region, then the full 

area of the confined concrete region is considered in residual axial load capacity computations 

because the cover region of the concrete is assumed to spall before the axial failure. In this case, 

the residual axial load capacity of concrete is calculated according to: 

 ( ),1 0.85c cc core stP f A A= −  (16) 

where coreA is the area of the concrete bounded between the spirals and stA  is the total area of the 

reinforcing bars. coreA  and stA are computed according to: 

 
2

2core
DA cc = π − 

 
 (17) 

 st barA nA=  (18) 
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where cc is the clear cover of the column section, n  is the number of reinforcing bars, and barA is 

the cross-sectional area of a reinforcing bar.  

If there is crushing in the core region, then the residual axial load capacity of concrete is 

calculated by taking the uncrushed area of the concrete core into account according to: 

 ( ),2 0.85c cc uncrushedP f A=  (19) 

where the area of the uncrushed concrete is calculated according to: 

 
2

2uncrushed
DA c x = π − + 

 
 (20) 

To summarize, the following is proposed for the calculation of the residual axial load capacity of 

concrete, cP : 

 ,1

,2

   when there is no crushing in the core
   when there is crushing in the core

c c

c c

P P
P P
=

=
 (21) 

 

7.3 Residual axial load capacity of reinforcing steel bars 

The longitudinal reinforcing bars are able to carry axial loads up to their buckling or plastic 

capacities (Elwood and Moehle 2005). The plastic strength of the reinforcing bars in deformed 

shape is illustrated in Figure 11.  The plastic moment capacity of one reinforcing bar of a bridge 

column, pM , can be related to its plastic axial capacity, 1sP , as follows: 

 ,p r s pM P= ∆  (22) 
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where r∆ is the residual displacement of the column at the end of the lateral loading. From the 

axial force and moment equilibrium on the reinforcing bar section, as illustrated in Figure 11, the 

following equations can be obtained:  

 2p tens y tensM A f y=  (23) 

 , ( 2 )s p bar tens yP A A f= −  (24) 

where tensA is the area of the reinforcing bar in tension, and tensy is the distance from the centroid 

of the reinforcing bar to the centroid of the tension area. From Equations 23 and 24, the plastic 

axial capacity of a bar can be calculated by iteratively changing the tensA value.  The buckling 

capacity of the reinforcing bar is calculated according to Elwood and Moehle (2005): 

 
2

, 2

0.1 s bar
s b

E IP
s

π
=  

The total residual axial load capacity of the reinforcing steel bars is then calculated according to: 

 , ,s s p s bP nP nP= <  (25) 

Calculation of the residual axial load capacity of concrete, Pc , and the residual axial load 

capacity of reinforcing steel bars, Ps , facilitates the calculation of the residual axial load capacity 

of the column section, Pr , based on Equation 1.  
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Figure 11. Plastic strength of a reinforcing bar 

 

8 Validation of the model 

The proposed mechanistic model in this study has been validated using the experimental study 

on circular bridge columns performed by Terzic and Stojadinovic (2010).  As stated previously, 

this experimental study has two loading phases. In the first phase, the specimens are displaced up 

to a pre-determined level of displacement ductility by bilateral, quasi-static circular loading.  In 

the second phase, damaged columns are re-centered and axially compressed until they fail. The 

simulation details and the observed damage in this testing sequence are summarized in Table 4. 

Although all specimens are re-centered following the lateral loading and before the application 

of the axial test, a 1% residual drift is observed in the specimen Base15. The axial capacities 

determined at the end of the testing are also presented in the last row of Table 4.  
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Table 4. Lateral loading information, observed damage and residual axial load  
capacity of specimens 

Loading or 
damage 
information 

Specimen 

Base 0 Base 15 Base 30 Base 45 

Displacement 
ductility level 

No lateral 
loading 1.5 3.0 4.5 

Damage during 
the lateral loading N.A No visible 

cracks 

Horizontal 
cracks, vertical 
cracks less than 
1/32 inch, and 
some spalling 
of concrete at 
the bottom 8 in. 
of the column 

Extensive 
yielding of steel 
and spalling of 
concrete, 
reduction in 
volume of 
concrete core in 
the plastic hinge 
region 

Residual drift at 
the end of the 
lateral loading 

No 1 % No No 

Axial capacity 
following lateral 
loading (kips) 

1459 1137 1355 1170 

 

The input parameters used in the mechanistic model are provided in Table 5. As the geometric 

properties of specimens are shown in Figure 3, these parameters are not included in Table 5. 
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Table 5. The input parameters for the mechanistic model 

Property Unit 
Specimen 

Base 0 Base 15 Base 30 Base 45 
Maximum displacement, Δmax in. 0 0.83 1.67 2.45 
Residual displacement, Δr in. 0 0.64 0 0 
Lateral force at peak 
displacement, F kips 0 18 20 22 

Unconfined compressive 
strength, fc 

ksi 5.48 5.05 4.96 5.09 

Yield strength of reinforcing 
bars, fy 

ksi 
 70.7 70.7 70.7 70.7 

Ultimate strength of 
reinforcing bars, fu 

ksi 120 120 120 120 

Yield strength of spirals, fyh 
ksi 
 95 95 95 95 

 

The residual axial load capacities of each specimen calculated using the proposed model are 

compared to the experimental results in Figure 12. The relative error between the axial capacity 

estimated by the model and the experimental capacity for each specimen is presented in Figure 

13. From Figures 12 and 13, the relative error is seen to be less than 3% in all specimens. This 

demonstrates that the proposed model is able to accurately estimate the residual axial load 

capacities of flexure-dominated circular bridge columns. From this validation study, it is shown 

that the proposed model requires less effort to estimate the residual axial load capacity than 

detailed finite element modeling requires. Therefore, this model can be used as a rapid post-event 

assessment tool regarding the functionality of bridges.  
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Figure 12. Comparison of residual axial load capacity estimation to experimental results 

 

Figure 13. Relative error in residual axial capacity estimation for each specimen 
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9 Sensitivity analysis 

Sensitivity analysis is performed to identify parameters to which the model’s output is most 

sensitive. The results of the sensitivity analysis facilitate an understanding of the relative 

importance of input parameters on the residual axial load capacity. This understanding can guide 

the refinement of the model by removing the parameters to which the residual axial capacity is 

insensitive.  In this study, the Sobol method (Sobol 1993, 2001) is used for sensitivity analysis. 

The Sobol method is a global sensitivity analysis technique, in that it examines an integrated 

sensitivity over the entire input parameter space. The Sobol method is a variance-based method 

where the contribution of each input parameter to the total variance of the output is quantified by 

decomposing the variance of the model’s output into variance of model parameters according to: 

 12
1

( ) i ij k
i i j

V y V V V ⋅⋅⋅
>

= + + ⋅⋅⋅ +∑ ∑∑  (26) 

where Vi is the first-order model output variance due to the ith component of a given input 

parameter xi and Vij is the second-order model output variance due to the interaction between ith 

and jth component of given input parameters xi and xj. The sensitivity of the output V(y) to 

variation of the input parameters, x1 to xn, is quantified using a first-order sensitivity index, Si, by 

using: 

 
( )

i
i

VS
V y

=  (27) 

A total order sensitivity index, STi, is also used to measure the sensitivity of the output to a 

parameter plus its interactions with other parameters calculated according to: 

 ~1
( )

i
Ti

VS
V y

= −   (28) 

where ~iV  is the average variance of all parameters except xi.  
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The Sobol method is used to compute the sensitivity indices for the key parameters of the 

residual axial load capacity estimation model proposed in this study. Nine independent input 

parameters are identified in the model and listed in Table 6. A uniform distribution is assumed 

for each parameter, with the range of parameters being within ± 5% of the nominal value. 

Table 6. Parameters and parameter ranges considered in the sensitivity analysis 

Number Parameter Name Symbol Unit Range 

1 Concrete compressive strength fc ksi 4.8-5.2 

2 Yield strength of reinforcing steel bars fy ksi 65-75 

3 Ultimate strength of reinforcing steel bars fu ksi 110-130 

4 Yield strength of spirals fyh ksi 95-105 

5 Column length L in. 62-66 

6 Column diameter D in. 15.5-16.5 

7 Reinforcing bar diameter db in. 0.45-0.55 

8 Spiral diameter dsp in. 0.2-0.22 

9 Spiral spacing s in. 1.2-1.3 

The sensitivity analyses are performed for each specimen of Terzic and Stojadinovic (2010), 

which are used to validate the model. The first-order and total-order sensitivity indices obtained 

from the sensitivity analysis are presented in Figure 14 for each specimen. From sensitivity 

indices for the specimen Base 0, which is presented in Figure 14a, the residual axial load 

capacity is found to be most sensitive to compressive strength of concrete, fc, and the column 

diameter, D. The yield strength of steel, fy, and the length of the column, L, on the other hand, 

have negligible effects on the residual axial load capacity. Similar findings are obtained for the 

specimens Base 15 and Base 30, which are presented in Figure 14b and Figure 14c. However, as 

the target displacement ductility of the loading increases, the residual axial load capacity 

becomes more sensitive to the diameter of the column. These results are expected because the 

residual capacity estimations are mostly based on the cross-sectional area of the columns, which 

is a function of the column diameter. The sensitivity indices for specimen Base 45, which are 

presented in Figure 14d, show different trends than other specimens. In this case, the residual 

axial load capacity is found to be sensitive to spiral diameter, dsp, reinforcing bar diameter, db, 

26 
 



and length, L, of the column in addition to compressive strength of concrete, fc, and the column 

diameter, D. The main reason for the change in the sensitivity trends in the specimen Base 45 is 

that the crushing occurs in the core region of the column at higher displacement ductility levels 

and therefore the inelastic deformation of columns is taken into account (See Figure 8).The 

sensitivity indices presented in Figure 13 suggests that the further simplification on the 

parameters of the model might not be possible because all parameters become relatively  

important when crushing occurs on the core region at higher displacements. 

 

Figure 14. Sensitivity indices for each specimen 
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10 Summary and conclusions 

A practical method to estimate the residual axial load capacity of reinforced concrete bridge 

columns, given a demand, has been developed. The method is based on mechanics and utilizes 

plastic hinge development of columns and cross-sectional analysis. The method is based on the 

notion that the residual axial load capacity of a column is the sum of the remaining axial 

capacities of concrete and reinforcing steel bars. More specifically, the concrete and reinforcing 

bars share the axial load capacity based on the multiplication of their strengths with their 

deformed cross-sectional areas. For the axial capacity calculation of a damaged column, the 

uncrushed concrete area, rather than the gross area, is considered, where the crushing depth of 

the concrete is computed using the stress-strain distributions of concrete and reinforcing steel 

bars at the maximum drift. The residual axial load capacity of reinforcing bars is determined 

through plastic strength analysis of the bars using the residual displacement at the end of the 

lateral loading.  The developed model is validated using the results of past experimental testing 

on column specimens. Based on the results and findings of this study, the following conclusions 

are provided: 

(1) The practical method is computationally efficient yet offers high fidelity in that it was 

shown to be capable of estimating the residual axial load capacity of bridge columns with 

a reasonable accuracy (i.e., less than 3% relative error) when compared to past 

experimental results for columns dominated by flexure and designed according to modern 

standards. 

(2) The model is parsimonious in that the results of the sensitivity analysis suggest no further 

simplification (i.e., elimination of parameters) is possible since as demand increases, the 

residual axial load capacity becomes sensitive to the variations in all the input parameters 

(see Figure 14).  

(3) This study explores the mechanistic relationship between lateral seismic demand and the 

residual load capacity of a flexure-dominated single bridge column. This relationship can 

be used to simulate the impact of regional hazards on the functionality of transportation 

networks for disaster planning and loss estimation. 
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