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1 Introduction

According to the U.S. Environmental Protection Agency (2006), in 2003, the transportation sector
contributed 27 percent of total U.S. greenhouse gas (GHG) emissions. This number is expected to
grow rapidly with an estimated 48 percent increase in transportation energy use by 2015. Future
transportation service network designs ought to take into account environmental and sustainability
issues. In view of these issues, the project proposed two models that seek to improve the sustainabil-
ity of a transportation system: (1) an mixed-integer linear programming model for adaptive signal
control that constrains the emission rate on each link of a tra�c subnetwork, and (2) a dynamic
second-best congestion toll problem with embedded emission model for the management and control
of tollable vehicular networks.

1.1 Tra�c signal control with emission constraints

Tra�c signals are essential elements in the management of transportation networks. Over the
past decades, signal control strategies have evolved greatly, from simple, fixed-time plans based
on historical data and updated infrequently throughout the day to adaptive control systems that
update continuously in response to real-time tra�c information. The performance of a signal control
system depends on two primary factors: the optimization procedure employed and the objective of
the optimization.

1.1.1 Mathematical programming approach to tra�c signal control

We distinguish between two optimization procedures: (1) heuristic approaches, such as those de-
veloped with feedback control, genetic algorithms, and fuzzy logic; and (2) exact approaches, such
as those arising from mathematical control theory and mathematical programming. Among these
exact approaches, mixed-integer programs (MIPs) are of particular interest and have been used ex-
tensively in the signal control literature. For example, Improta and Cantarella (1984) formulated
and solved the tra�c signal control problem for a single road junction as a mixed binary integer
program. Lo (1999a,b) employed the cell transmission model (CTM) (Daganzo, 1994; 1995) and
casted a signal control problem as a mixed-integer linear program. In these projects, the authors
were able to address time-varying tra�c patterns by adopting dynamic signal timing plans. Lin
and Wang (2004) applied the same formulation based on CTM to capture more realistic features of
signalized junctions such as the total number of vehicle stops and signal preemption in the presence
of emergency vehicles.

One subtle issue associated with CTM-based mathematical programs is the phenomenon known
as tra�c holding, which stems from the linear relaxation of the nonlinear dynamic. Such an ac-
tion induces the unintended holding of vehicles, i.e., a vehicle is held at a cell even though there
is capacity available downstream for the vehicle to advance. The tra�c holding can be avoided
by introducing additional binary variables (See Lo, 1999c). However, this approach ends up with
a significant amount of binary variables and yields the program computationally demanding. An
alternative way to treat the holding problem is to manipulate the objective function such that the
optimization mechanism enforces the full utilization of available capacities in the network. This
approach, however, strongly depends on specific structure of the problem and the underlying op-
timization procedure. A more in-depth discussion on tra�c holding can be found in Shen et al.
(2007).

This project is concerned with controlling signalized junctions where the dynamics of vehicular
flows are governed by the network extension of the Lighthill-Whitham-Richards model. In particular,
we employ the link-based kinematic wave model (LKWM) proposed by Han et al. (2012). This
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model describes network dynamics with variables associated to the entrance and exit of each link.
It employs a Newell-type variational argument Newell (1993); Daganzo (2005) to capture shock
waves and vehicle spillback. Analytical properties of this model pertaining to solution existence,
uniqueness, and well-posedness are provided by Han et al. (2012). A discrete-time version of the
LKWM, known as the link transmission model, was discussed by Yperman et al. (2005). In contrast
to the cell-based math programming approaches, where the variables of interest correspond to each
cell and each time interval, the model proposed in this project is link-based (i.e., the variables are
associated with each link and each time interval). The resulting MILP substantially reduces the
number of (binary) variables needed to properly carry out the flow dynamics. In addition, the link-
based approach prevents vehicle holding within a link without resorting to the use of many binary
variables. The formulation proposed also captures key phenomena of vehicular flow at junctions in
urban networks, such as the formation, propagation, and dissipation of physical queues, vehicular
spillback, and vehicle turning at intersections. It also considers important features of signal control
such as dynamic signal timing plans and time-varying flow patterns.

1.1.2 Recent advancement in solving MILP

Due to the critical role of an MILP in mathematical programming, the solution schemes for an
MILP have been heavily investigated in literature (see Bernhart et al., 1998, and Geo↵rion and
Marstern, 1972, for reviews on MILP). Despite the presence of integer variables, The computational
and algorithmic advances in the last decade have made an MILP of larger problem scales fairly
e�ciently computable Bertsimas et al. (2011) via highly commercialized solvers, including CPLEX
and Gurobi, given that linearity is maintained in both objective and constraints. However, for the
nonlinear case, even though some mixed-integer quadratic programs can be handled by both CPLEX
and Gurobi, nonlinearity will result in a substantial increase in computational overhead in general.
If, in addition, any of the objective and/or constraint functions become nonconvex, the problem will
become extremely challenging to solve, or, sometimes, even to identify a feasible solution Burer and
Letchford (2012).

1.1.3 Considering vehicle emissions in the optimization procedure

The majority of adaptive tra�c signal control schemes update signal timings to minimize total ve-
hicular delays. Representatives of such signal-control systems are OPAC (Gartner, 1983), RHODES
(Mirchandani and Head, 2000), SCAT (Sims and Dobinson, 1980) and SCOOT (Hunt et al., 1982).
Other control strategies seek to minimize delays to a subset of vehicles; for example, the goal of
transit signal priority strategies is to reduce delays for transit vehicles, often to the detriment of
those remaining; for more details, see Skabardonis (2000). More recently, a transit signal priority
strategy was proposed to minimize total person delay, which essentially considers a weighted average
of vehicular delay using the passenger occupancies of each vehicle as the weights Christofa et al.
(2013).

Relatively less attention has been given to vehicular emissions when optimizing signal timings.
The earliest work appears to be by Robertson et al. (1980), but this work used macroscopic simula-
tions that did not accurately account for vehicle dynamics at intersections. The e↵orts that followed
either relied on combining detailed emissions models with outputs from microscopic simulations or
models (Stevanovic et al., 2009; Li and Shimamoto, 2011; Lin et al., 2010; Lv et al., 2013), or they
relied on macroscopic emissions models estimated from data (Aziz and Ukkusuri, 2012; Zhang et
al., 2013). The former approach is more accurate and relies on simulation-based optimization that
requires significant computational e↵ort. The latter is useful but as pointed out by a survey project
(Szeto et al., 2012) and the literature therein, the environmental considerations typically result in
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nonlinear and nonconvex constraints and objective functions in the mathematical programming for-
mulation, which itself imposes a tremendous computational burden. As a result, heuristic methods,
such as one found in Ferrari (1995), are developed for this type of problem. Classical methods such
as the inner penalty technique Yang and Bell (1997) and augmented Lagrangian multiplier technique
Yang et al. (2010) have also been used.

This project presents a novel approach to circumvent the aforementioned computational chal-
lenge by including emissions considerations and optimization constraints (e.g., maximizing through-
put subject to some emissions standard) and reformulating these constraints as linear functions
through the use of numerical experimentation and robust optimization. This method is made pos-
sible by leveraging observed relationships between aggregated link emission rates and the link oc-
cupancy that arise when certain macroscopic or mesoscopic emission models are employed. Such
empirical observations are supported by extensive numerical simulations, as we shall demonstrate
below. A detailed description of the simulation and synthetic data is presented in Section 2.2.

Despite the strong correlation between the aggregated emission rate and certain macroscopic
tra�c quantities (e.g., link occupancy), there are non-negligible errors associated with such approx-
imation. Errors and perturbations to a deterministic model can render an optimal solution in the
ideal case suboptimal in implementation. A natural approach to capture uncertainty is by assuming
that uncertain parameters follow certain probability distributions and by employing the notions and
methodologies in stochastic programming. However, such an approach has two main limitations: (1)
exact knowledge of error distributions is often di�cult to acquire, and (2) stochastic programming
is recognized as highly intractable to solve even with linear objective function and linear constraint
functions. In view of these challenges, we propose to handle uncertainty in the perspective of robust
optimization.

A robust optimization is a distribution-free uncertainty set approach that seeks to minimize
the worst-case cost and/or to remain feasible in the worst scenario. Compared to stochastic pro-
gramming, robust optimization makes no assumption on the underlying distribution of uncertain
parameters. Moreover, it has been shown to work as a powerful approximation to stochastic pro-
gramming and even probabilistic models with significantly reduced computational cost (Ben-Tal
and Nemirovski, 1998, 1999, 2000; Bertsimas et al., 2011a,b; Bandi and Bertismas, 2012; Rikun,
2011). Although solutions to robust optimization problems can be relatively conservative, the con-
servatism is adjustable with the flexibility of choosing uncertainty sets (Bertsimas and Sim, 2004).
A comprehensive review of robust optimization is provided by Bertsimas et al. (2011a).

1.1.4 Contributions

In this project, we will invoke the robust optimization approach to capture the errors arising from
statistical learning of the emission model. The goal of this approach is to maximize the total
throughput of the signalized network while keeping the vehicle emission below a desired level, even
in the worst case. The complex nonlinear and nonconvex signal optimization problem with emissions
will be reformulated as a mixed-integer linear program (MILP) in most cases, which can be e�ciently
solved using most commercial software packages. The proposed MILP captures vehicle spillbacks,
features time-varying signal cycle lengths and splits, avoids the tra�c holding problem, and addresses
nonconvex emissions constraints in a mathematically tractable way. The proposed solution method
is tested using a synthetic experiment to demonstrate its performance.

1.2 Bi-objective dynamic congestion toll pricing model

In this project, we propose a dynamic second-best congestion toll problem with embedded emission
model for the management and control of tollable vehicular networks. We assume that users of a
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given network are selfishly minimizing their own disutility, which consists of travel delay, early/late
arrival penalties as well as the price of tolls. On top of that, there exists a central authority that
undertakes the role of the Stackelberg leader, whose objective includes two di↵erent aspects: the
network e�ciency and the environmental well-being in the presence of vehicle-driven emission.

The upper-level decision variable for the central authority (Stackelberg leader) is a dynamic
congestion toll imposed on certain links of the network, while the lower-level decision variables for the
travelers (Stackelberg follower) include route and departure time choices. The proposed congestion
pricing problem with embedded emission model is formulated as a mathematical programming with
equilibrium constraints (MPEC) problem, with multiple objectives including the mitigation of both
congestion and tra�c emission on a network-wide level.

To solve the multi-objective MPEC problem, we start by rewriting the di↵erential variational in-
equality (DVI) formulation of dynamic user equilibrium into a di↵erential complementarity problem.
Then, we employ a weighted-sum scalarization method to handle the multiple objectives. With these
two steps, the multi-objective MPEC problem is transformed into a single-objective mathematical
program with complementarity constraints (MPCC). To avoid the loss of constraint qualification,
we relax the mathematical program by applying a quadratic penalty-based method. The relaxed
problem is then solved with a gradient projection method mentioned by Friesz (2010).

1.2.1 Congestion toll pricing

The idea of employing toll pricing to mitigate congestion arises from the congestion pricing strategy
originally proposed by Pigou (1920). In the literature, toll pricing problems can be classified into
two categories: (1) first-best toll pricing, which means every arc of the network is tollable; and (2)
second-best toll pricing, which assumes that only a subset of arcs is tolled for political or other
reasons. Examples of the first category include marginal social cost pricing strategy Arnott and
Kraus (1998), and several other models and methodologies (Hearn and Ramana, 1998; Dial, 1999,
2000). Regarding the second-best tolling strategy, Lawphongpanich and Hearn (2004) propose a
mathematical program with equilibrium constraints (MPEC) approach to compute the optimal toll
prices. All the aforementioned literature are restricted to the static case. For a comprehensive
review on static road pricing problems, the reader is referred to Yang and Huang (2005). By nature
of these problems, only route choices of travelers are captured by the models.

In the past two decades, dynamic tra�c assignment (DTA) models and dynamic congestion
tolling problems have received increased attention due to their capability of capturing not only route
choices but also departure time choices of travelers. Dynamic congestion pricing in the presence of
tra�c bottlenecks have been investigated by Arnott et al. (1990), Arnott and Kraus (1998), Braid
(1996), and De Palma and Lindsey (2000). Friesz et al. (2007) propose an MPEC problem and a
solution approach to determine the optimal second-best tolling strategy, using the link delay model
(LDM) original introduced by Friesz et al. (1993). Yao et al. (2012) further study a dynamic
congestion pricing problem in the presence of demand uncertainty. Wismans (2012) employs the
cell transmission model to study the multi-objective congestion management problem. He uses a
genetic algorithm and response surface methods for solving the MPEC problems. A more complete
review of existing dynamic congestion pricing models and solution approaches is presented by Yao
et al. (2012).

In this study, we seek to explore the e↵ectiveness of second-best tolling strategies in minimizing
both tra�c congestion and automobile-induced emissions. To this end, we propose a multi-objective
MPEC problem to determine the optimal toll price. Such an MPEC model has a lower-level dynamic
user equilibrium problem that employs the LWR-Lax model Friesz et al. (2013) for the dynamic
network loading subproblem. The contribution made by this project is as follows.
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• We propose an approach of embedding emission models into the dynamic network loading
(DNL) submodel of the dynamic user equilibrium problem. Such an approach is compatible
with a variety of tra�c flow models and emission models, which may capture vehicle spillback,
and acceleration/deceleration.

• We propose to reformulate the dynamic MPEC model into a single-level optimal control prob-
lem using the equivalence between the DVI and the complementarity systems. The reformu-
lation admits existing solution schemes.

• A Braess-type paradox is reported in our numerical results, which extends the classical Braess
paradox Braess (1969) to a dynamic case and to the context of environmental well-being. Such
observation delivers further managerial insights to sustainable road network management.

1.2.2 Dynamic user equilibrium model

In this report, we employ the simultaneous route-and-departure choice (SRDC) dynamic user equi-
librium model proposed by Friesz et al. (1993). For the SRDC notion of DUE, unit travel cost,
including early and late arrival penalties, is identical for those route and departure time choices
selected by travelers between a given origin-destination pair. Such a problem is articulated and for-
mulated as a variational inequality (VI) by Friesz et al. (1993). The DUE model typically consists
of two major components: the mathematical notion of equilibrium among Nash agents, and the
network performance model known as the dynamic network loading submodel. The DNL aims at
describing and predicting temporal evolution of system states by combining link dynamics and flow
propagation constraints with link and path delay models. Note that, by referring to the network
loading procedure, we are neither employing nor suggesting a sequential approach to the study and
computation of DUE. Rather, a subset of the equations and inequalities comprising a complete
DUE model may be grouped in a way that identifies a tra�c assignment subproblem and a network
loading subproblem. Such a grouping and choice of names is merely a matter of convenient lan-
guage that avoids repetitive reference to the same mathematical expressions. Use of such language
does not alter the need to solve both the assignment and loading problems consistently and, thus,
simultaneously.

Friesz et al. (2001) solve the di↵erential variational inequality formulation of DUE and the
DNL subproblem simultaneously by formulating the arc dynamics, flow propagation constraints as
a system of ordinary di↵erential equations with state-dependent time lags. By doing so, they turn
the DUE problem into a “single-level” DVI problem that can be handled in the optimal control
framework. In addition, necessary conditions for optimal control problems with state-dependent
time lags are derived therein. Friesz and Mookherjee (2006) combine the theory of optimal control
and the theory of infinite dimensional VIs are combined to create an implicit fixed point algorithm
for calculating DUE. Friesz et al. (2011) extend the time scale in which DUE problems are analyzed
from within-day to day-to-day. A dual-time scale DUE is articulated and solved as a result. Friesz et
al. (2013) consider the Lighthill-Whitham-Richards model (Lighthill and Whitham, 1955; Richards,
1956) for the DNL submodel. The authors employ a variational method, known as Lax formula (Lax,
1957; Evans, 2010), derived for scalar conservation laws and Hamilton-Jacobi equations. In that
project, the DNL subproblem is formulated as a system of di↵erential algebraic equations (DAEs),
which can be e�ciently solved for medium- and large-scale networks.

1.2.3 Automobile emission models

Modeling approaches for automobile source emission can be classified into three categories: micro-
scopic, macroscopic, and mesoscopic approaches. The microscopic emission models are relatively
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accurate: they characterize the emission rate on the level of a single vehicle, based on the physical
attributes of the vehicle, driving behavior of the driver, as well as the surrounding environment.
It is assumed that the emission rate e(t) of a moving vehicle is to be expressed as a function of
instantaneous velocity v(t) and acceleration a(t),

e(t) = f1
�

v(t), a(t)
�

. (1.1)

Such models can be easily calibrated and validated in a laboratorial environment. There are several
emission models based on the microscopic emission mechanism, e.g., Barth et al. (1996), Panis et
al. (2006), and Rakha et al. (2004). The drawback of the microscopic modeling approach is the
lack of measurements associated with each individual car on the road. On the other hand, it is
relatively easy to measure the tra�c dynamics on a macroscopic level. The macroscopic emission
models (Ekström et al. 2004) express the average emission rate ē(t) on a road segment as a function
of the average density ⇢̄ and average velocity v̄(t) in that same segment

ē(t) = f2
�

⇢̄(t), v̄(t)
�

(1.2)

The drawback of the macroscopic modeling approaches for emission lies in the fact that the model
is di�cult to calibrate and validate, due to insu�cient emission measurements on a road. The third
type of emission models, the mesoscopic emission models, approximate individual vehicles’ dynamics
using macroscopic flow models and measurements. Then the macroscopic emission rate is aggregated
among individual vehicles, while the emission rate of each individual vehicle is computed at a
microscopic level. The mesoscopic models (Csikós et al., 2011; Csikós and Varga, 2011; Zegeye et al.,
2010) take the modeling advantages of both macroscopic tra�c flow models and microscopic emission
models, avoiding the drawbacks of the previous two approaches. However, combining a macroscopic
tra�c model that ignores granularity of microscopic quantities with an accurate microscopic emission
model may introduce additional uncertainties into the model. Therefore, the mesoscopic models need
to be carefully calibrated and validated using macroscopic tra�c and emission measurements.

In this project, the process of emission estimation is embedded in the procedure of dynamic net-
work loading within the DUE problem. The DNL procedure also provides a basis for the comparison
of various microscopic and macroscopic emission functions, among which we distinguish between the
two-argument functions e(t) = f1

�

v(t), a(t)
�

and the single-argument functions e(t) = f3
�

v(t)
�

.
The two-argument functions, such as the one proposed in the modal emission model (Barth et

al., 1996), apply a physical approach that matches the power demand of a vehicle to various driving
conditions including low/high speed cruising, acceleration/deceleration, idling, and stop-and-go, etc.
Such models are relatively accurate and can be calibrated for di↵erent types of vehicles. However,
it is relatively di�cult to integrate the modal model into a macroscopic tra�c flow model. In
particular, the higher order tra�c quantities such as acceleration/deceleration cannot be su�ciently
captured by first-order models such as the Lighthill-Whitham-Richards conservation law model. We
will have more to say about this in Section 3.4.1.

On the other hand, the one-argument emission functions typically depend on the average speed.
Rose et al. (1965) show that when traveling speed is under 80 km/hour, the relation between speed
v (in km/hour) and HC/CO emissions e

x

(in pound/km) can be approximated by (for now and
sequel, e

x

denote the emission per unit distance).

e
x

= b1 v
�b2 (1.3)

where b1, b2 are parameters depending on vehicle type and surrounding environment. Kent and
Mudford (1979) collected driving pattern data in Sydney and found that NO

y

emission ẽ
x

can be
modeled by

ẽ
x

= b̃1 +
b̃2
v

(1.4)
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According to the Emission Factor Model 2000 CARB (2000) by California Air Resources Board,
constantly updated since 1988, the hot running emissions per unit distance

ê
x

= BER⇥ exp
n

b̂1(v � 17.03) + b̂2(v � 17.03)2
o

(1.5)

where BER stands for basic emission rates, which are constants associated with CO, NO
y

, HC.
The unit of velocity is in miles/hour, the unit of ê

x

is in grams/mile.

1.2.4 Solving MPEC problems

The mathematical program with equilibrium constraints (MPEC), by its bi-level and non-convex
nature, often creates computational di�culties. A common approach to solve an MPEC problem is
to reformulate the bi-level program into a mathematical program with complementarity constraints
(MPCC). (See Ban et al., 2006; Friesz, 2010). However, as noted by Rodrigues and Monteiro (2006)
and Ban et al. (2006), the complementarity constraints might lose certain constraint qualifications.
To resolve this issue, some regularization techniques are proposed in the literature. Ralph andWright
(2004) study a relaxation approach, which is then applied by Ban et al. (2006) to solve a continuous
network design problem. Anitescu (2000) proposes an l1-penalty approach and studies its impact
on the convergence of an interior point algorithm; while Monteiro and Meira (2011) test a quadratic
penalty function. According to their numerical results, quadratic penalty is a promising approach
to handle complementarity constraints. However, all of the discussions above focus on MPCC or
MPEC in the context of finite dimensional programs. Regarding continuous-time dynamic MPECs,
numerical techniques were scarcely visited. Existing literature on continuous-time MPECs includes
the single-level reformulation proposed by Friesz et al. (2007), the metaheuristic approach by Yao
et al. (2012) and a simultaneous discretization-based method by Raghunathan et al. (2004).

This project utilizes the quadratic penalty method to solve the proposed dynamic MPEC prob-
lem. In particular, we will drop the complementarity constraints from the MPCC reformulation,
and attach to the objective function a quadratic penalty function for the dropped constraints. The
numerical results show general solvability and e↵ectiveness of the proposed numerical method.

2 A robust optimization approach for dynamic tra�c signal con-
trol with emission constraints

2.1 Formulation of the tra�c signal control problem using the variational theory

This section recaps the link-based kinematic wave model (LKWM) proposed by Han et al. (2012) in
continuous time, whose discrete time counterpart is equivalent to the link transmission model (LTM)
discussed by Yperman et al. (2005). The problem of optimal signal control is then formulated, based
on the LKWM, as a mixed-integer linear program in discrete time.

2.1.1 Lighthill-Whitham-Richards model

Following the classical model introduced by Lighthill and Whitham (1955) and Richards (1956),
we model the tra�c dynamics on a link with the following first order partial di↵erential equation
(PDE), which describes the spatial-temporal evolution of density and flow

@

@t
⇢(t, x) +

@

@x
f
�

⇢(t, x)
�

= 0 (2.6)
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where ⇢(t, x) : [0, +1) ⇥ [a, b] ! [0, ⇢
j

] is average vehicle density, f(⇢) : [0, ⇢jam] ! [0, C] is
average flow. ⇢jam is jam density, C is flow capacity. The function f(·) articulates a density-flow
relation and is commonly referred to as the fundamental diagram.

Classical mathematical results on the first-order hyperbolic equations of the form (2.6) can be
found in Bressan (2000). For a detailed discussion of numerical schemes for conservation laws,
we refer the reader to Godunov (1959) and LeVeque (1992). A well-known discrete version of the
LWR model, the Cell Transmission Model (CTM), was introduced by Daganzo (1994, 1995); the
latter reference also extends the discrete dynamic to network structures through straightforward
bookkeeping. Other studies of the network extension of the LWR model or the CTM include Bretti
et al. (2006), Coclite et al (2005), Herty and Klar (2003), Holden and Risebro (1995), Jin (2010),
Jin and Zhang (2003), Lebacque and Khoshyaran (1999), and Lebacque and Khoshyaran (2002).

Let us introduce function N(·, ·) : [0, +1)⇥ [a, b] ! R, such that

@

@x
N(t, x) = � ⇢(t, x),

@

@t
N(t, x) = f

�

⇢(t, x)
�

. (2.7)

Function N(t, x) is sometimes referred to as the Moskowitz function or the Newell-curves. It has
been studied extensively, for example, by Claudel and Bayen (2010); Daganzo (2005); Moskowitz
(1965); Newell (1993). A well-known property of N(·, ·) is that it satisfies the following Hamilton-
Jacobi equation

@

@t
N(t, x)� f

✓

� @

@x
N(t, x)

◆

= 0 (t, x) 2 [0, +1)⇥ [a, b] (2.8)

2.1.2 Link dynamics

Let us consider a homogeneous link [a, b], whose dynamic is governed by the LWR model. A
triangular fundamental diagram is assumed, which takes the following form:

f(⇢) =

(

k⇢ ⇢ 2 [0, ⇢⇤]

�w(⇢� ⇢
jam

) ⇢ 2 (⇢⇤, ⇢
jam

]
(2.9)

where k and w denote, respectively, the forward and backward propagating speeds of kinematic
waves; ⇢⇤ denotes the critical density at which the flow is maximized; and ⇢

jam

represents the jam
density.

Define a binary variable r̄(t) that indicates whether the entrance of the link is in the free-flow
phase (r̄(t) = 0) or in the congested phase (r̄(t) = 1). A similar notation r̂(t) is used for the exit of
the link. We also define the entering flow q̄(t) and the exiting flow q̂(t) of the link. The variational
theory in Aubin et al. (2008), Daganzo (2005), and Han et al. (2012) then asserts that

r̄(t) =

8

<

:

1, if
R

t

0 q̄(⌧) d⌧ =
R

t�L

w

0 q̂(⌧) d⌧ + ⇢
j

L

0, if
R

t

0 q̄(⌧) d⌧ <
R

t�L

w

0 q̂(⌧) d⌧ + ⇢
j

L
(2.10)

r̂(t) =

8

<

:

0, if
R

t�L

k

0 q̄(⌧) d⌧ =
R

t

0 q̂(⌧) d⌧

1, if
R

t�L

k

0 q̄(⌧) d⌧ >
R

t

0 q̂(⌧) d⌧
(2.11)

where L denotes the link length.
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I
1

I
4

I
2

I
3

Figure 1: A signalized junction with two incoming links and two outgoing links.

2.1.3 Dynamics at signalized intersections

Without loss of generality, we relate our discussion of the dynamics on signalized networks to the
following junction depicted in Figure 1.
Such a junction has two incoming links I1, I2, and two outgoing links I3, I4. Each link is expressed
as a spatial interval [a

i

, b
i

], i = 1, 2, 3, 4. The fundamental diagram of road tra�c on each link is
given by

f
i

(⇢) =

(

k
i

⇢ ⇢ 2 [0, ⇢⇤
i

]

�w
i

(⇢� ⇢jam
i

) ⇢ 2 (⇢⇤
i

, ⇢jam
i

]
i = 1, 2, 3, 4

with C
i

.
= k

i

⇢⇤
i

being the flow capacity. We make the following assumption.
(A) Drivers arriving at the junction distribute on the outgoing roads according to some known
coe�cients:

A =

✓

↵1,3 ↵1,4

↵2,3 ↵2,4

◆

where ↵
ij

denotes the percentage of tra�c coming from link I
i

that distributes to outgoing link I
j

.
We next introduce the concepts of link demand and link supply, originally articulated by

Lebacque and Khoshyaran (1999, 2002). The link demand and supply for I
i

, denoted by D
i

(t)
and S

i

(t) respectively, are determined as follows

D
i

(t) =

(

C
i

if r̂
i

(t) = 1

f
i

�

⇢
i

(t, b
i

�)
�

if r̂
i

(t) = 0
i = 1, 2 (2.12)

S
j

(t) =

(

C
j

if r̄
j

(t) = 0

f
j

�

⇢
j

(t, a
j

+)
�

if r̄
j

(t) = 1
j = 3, 4 (2.13)

Notice that in the case of a triangular fundamental diagram, the profiles of density/flow always
translate linearly until they encounter a shock wave. In other words, if r̂

i

(t) = 0 for some time t,
then the whole link remains in the uncongested phase. As a result, we have

f
i

�

⇢
i

(t, b
i

�)
�

= f
i

✓

⇢
i

�

t� L
i

k
i

, a
i

+
�

◆

= q̄
i

✓

t� L
i

k
i

◆

i = 1, 2

Similarly we have that

f
j

�

⇢
j

(t, a
j

+)
�

= f
j

✓

⇢
j

�

t� L
j

w
j

, b
j

+
�

◆

= q̂
j

✓

t� L
j

w
j

◆

j = 3, 4
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so that (2.12) and (2.13) can be re-written as

D
i

(t) =

(

C
i

if r̂
i

(t) = 1

q̄
i

⇣

t� L

i

k

i

⌘

if r̂
i

(t) = 0
i = 1, 2 (2.14)

S
j

(t) =

(

C
j

if r̄
j

(t) = 0

q̂
j

⇣

t� L

j

w

j

⌘

if r̄
j

(t) = 1
j = 3, 4 (2.15)

Let us consider piecewise-constant control functions u1(t) and u2(t) 2 {0, 1}, such that

u1(t) =

(

1 when the signal is green for I1

0 when the signal is red for I1
(2.16)

u2(t) =

(

1 when the signal is green for I2

0 when the signal is red for I2
(2.17)

One obvious identity that must be satisfied by these controls is u1(t) + u2(t) ⌘ 1, for all t. Finally,
we can now express the flow propagation across the signalized intersection as

q̂1(t) = min
�

D1(t), min{S3(t)
↵1,3

, S4(t)
↵1,4

} · u1(t)
 

q̂2(t) = min
�

D2(t), min{S3(t)
↵2,3

, S4(t)
↵2,4

} · u2(t)
 

q̄k3 = ↵1,3q̂1(t) + ↵2,3q̂2(t), q̄4(t) = ↵1,4q̂1(t) + ↵2,4q̂2(t)

(2.18)

Remark 2.1. In principle, the vehicle turning distribution matrix A = (↵
ij

) is allowed to be time-
dependent. The dynamics conveyed by (2.18) remain valid.

2.1.4 Continuous-time formulation

In this section, we summarize the previous discussion on the flow propagation constraints. Later
in the next section, a discrete time version will be presented which serves as the constraints of the
proposed mixed-integer linear program.

Let us fix the planning horizon [0, T ] for some fixed T > 0. Introducing the piecewise-constant
control variables u

i

(·) : [0, T ] ! {0, 1}, i = 1, 2, with the agreement that u
i

(t) = 0 if the light is
red for link I

i

, and u
i

(t) = 1 if the light is green for link I
i

. It is convenient to use the following set
of notations. For i = 1, 2, 3, 4.

q̄
i

(·), the flow of cars entering link I
i

,

q̂
i

(·), the flow of cars exiting link I
i

,

r̄
i

(·), the binary variable that indicates the regime at x = a
i

+,

r̂
i

(·), the binary variable that indicates the regime at x = b
i

�,

q̄max

i

(·), the maximum flow allowed to enter the link I
i

,

q̂max

i

(·), the maximum flow allowed to exit the link I
i

,

N
up,i

(·), the cumulative number of cars that have entered link I
i

,

N
down,i

(·), the cumulative number of cars that have exited link I
i

,

u
i

(·), the signal control variable for link I
i

,

10



Theorem 2.2. The dynamics at the signalized intersection visualized in Figure 1 can be described
by the following system of di↵erential algebraic equations (DAE) with binary variables.

d

dt
N

up,i

(t) = q̄
i

(t),
d

dt
N

down,i

(t) = q̂
i

(t), i = 1, 2, 3, 4 (2.19)

r̄
i

(t) =

(

1, if N
up,i

(t) � N
down,i

⇣

t� L

i

w

i

⌘

+ ⇢jam
i

L
i

0, otherwise
, i = 1, 2, 3, 4 (2.20)

r̂
i

(t) =

(

0, if N
up,i

⇣

t� L

i

k

i

⌘

 N
down,i

(t)

1, otherwise
, i = 1, 2, 3, 4 (2.21)

q̄max

i

(t) = C
i

+ r̄
i

(t)

✓

q̂
i

✓

t� L
i

w
i

◆

� C
i

◆

, i = 1, 2 (2.22)

q̂max

i

(t) = q̄
i

✓

t� L
i

k
i

◆

+ r̂
i

(t)

✓

C
i

� q̄
i

✓

t� L
i

k
i

◆◆

, i = 3, 4 (2.23)

q̂
i

(t) =

(

0, if u
i

(t) = 0

min
n

q̂max

i

(t),
q̄

max

3 (t)
↵

i,3
,
q̄

max

4 (t)
↵

i,4

o

if u
i

(t) = 1
, i = 1, 2 (2.24)

q̄
k

(t) = ↵1,k q̂1(t) + ↵2,k q̂2(t), k = 3, 4, (2.25)

u1(t) + u2(t) = 1 for all t 2 [0, T ] (2.26)

Proof. The proof is straightforward.

2.1.5 Discrete-time formulation

In this section, we present the discrete-time version of the optimization problem in Theorem 2.2.
Let us introduce a few more notations for the convenience of our presentation. Consider a uniform
time grid

0 = t0 < t1 . . . < tN = T, tj � tj�1 = �t, j = 1, . . . , N

Throughout the rest of this report, we use superscript ‘j’ to denote the discrete value evaluated at
time step tj . In addition, we let L

i

/k
i

= �f

i

�t, L
i

/w
i

= �b

i

�t, �f

i

2 N, �b

i

2 N, i = 1, 2, 3, 4.
Approximating the numerical integration with rectangular quadratures, we write equality (2.20)

and (2.21) in discrete time as

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�t

k��b

i

X

j=0

q̂j
i

� �t
k

X

j=0

q̄j
i

+ ⇢jamL
i

 M (1� r̄k
i

)

�t

k��b

i

X

j=0

q̂j
i

� �t
k

X

j=0

q̄j
i

+ ⇢jamL
i

� �M r̄k
i

+ "

�b

i

 k  N, i = 1, 2, 3, 4 (2.27)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�t

k��f

i

X

j=0

q̄j
i

� �t
k

X

j=0

q̂j
i

 M r̂k
i

�t

k��f

i

X

j=0

q̄j
i

� �t
k

X

j=0

q̂j
i

� M (r̂k
i

� 1) + "

�f

i

 k  N, i = 1, 2, 3, 4 (2.28)
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where r̄k
i

, r̂k
i

2 {0, 1}. M 2 R+ is a su�ciently large number, " 2 R+ is a su�ciently small number.
Constraints (2.27) and (2.28) determine the regime variables associated with the two boundaries of
each link. Once the flow phases are determined, the demand and supply functions (2.22), (2.23) are
rewritten in discrete time as

(

C
i

�M r̄j
i

 q̄max,j

i

 C
i

q̂
j��b

i

i

�M (1� r̄j
i

)  q̄max,j

i

 q̂
j��b

i

i

+M (1� r̄j
i

)
i = 1, 2, 3, 4 (2.29)

(

C
i

+M (r̂j
i

� 1)  q̂max,j

i

 C
i

q̄
j��f

i

i

�M r̂j
i

 q̂max,j

i

 q̄
j��f

i

i

+M r̂j
i

i = 1, 2, 3, 4 (2.30)

Next, let us reformulate (2.24). Introducing dummy variables ⇣j1 , ⇣
j

2 , 1  j  N , such that

⇣j
i

= min

(

q̂max,j

i

,
q̄max,j

3

↵
i,3

q̄max,j

4

↵
i,4

)

i = 1, 2 (2.31)

Then the discrete-time version of (2.24) can be readily written as

(

0  q̂j
i

 Muj
i

⇣j1 +M (uj
i

� 1)  q̂j
i

 ⇣j1
i = 1, 2, j = 1, . . . , N (2.32)

In order to write (2.31) as linear constraints, one could write it as three “less or equal” statements,
which is simple but bears the potential limitation of tra�c holding. Instead, one may introduce
additional binary variables ⇠j

i

, ⌘j
i

and real variables �j
i

for i = 1, 2, j = 1, . . . , N , such that (2.31)
can be accurately formulated as

8

>

>

>

>

<

>

>

>

>

:

q̄max,j

3 /↵
i,3 �M ⇠j

i

 �j
i

 q̄max,j

3 /↵
i,3

q̄max,j

4 /↵
i,4 �M (1� ⇠j

i

)  �j
i

 q̄max,j

4 /↵
i,4

q̂max,j

i

�M ⌘j
i

 ⇣j
i

 q̂max,j

i

�j
i

�M (1� ⌘j
i

)  ⇣j
i

 �j
i

i = 1, 2 (2.33)

Finally, we have the obvious relations

q̄j
k

(t) = ↵1,kq̂
j

1(t) + ↵2,kq̂
j

2(t) k = 3, 4, j = 1, . . . , N (2.34)

and
uj1 + uj2 = 1 j = 1, . . . , N (2.35)

The proposed MILP formulation of signal control problem is summarized by (2.27)-(2.30) and
(2.32)-(2.35). This formulation captures many desirable features of vehicular flow on networks such
as physical queues, spill back, vehicle turning, and shock formation and propagation (although not
explicitly). The signal control allows time-varying cycle length and splits, as well as the utilization
of real-time information of tra�c flows.

2.2 Macroscopic relationship between the emission rate and tra�c quantities

As mentioned in the introductory part of this report, the application of robust optimization tech-
niques to handle emission constraints requires a well-defined and calibrated macroscopic relationship
between the emission rate at a link level and certain macroscopic tra�c quantities. In this section,
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we will explore such potential relationships through numerical simulation that employs the link-
based kinematic wave model (link transmission model) as means of propagating flow through links
and junctions, as well as two di↵erent emission models: the average-speed emission model and the
modal emission model.

We consider a homogeneous link I
i

in which tra�c states are described by a triangular funda-
mental diagram. To obtain the desired correlations between emissions and macroscopic tra�c pa-
rameters, we simulate various scenarios of free-flow, capacity, and congested conditions on the link.
To this end, we randomly generate demand and supply profiles at places immediately upstream and
downstream to the link under consideration1. In addition, since we are mainly interested in estimat-
ing emission in tra�c stream controlled by signals, the generation of demand and supply profiles is
consistent with scenarios where signal controls are present. More specifically, we randomly generate
binary variables corresponding to signal controls at both places upstream and downstream to the
link of interest. Such choice of link boundary flows will generate stop-and-go waves and vehicle stops,
which are considered a major source of the most harmful emissions near signalized intersections.

Once the boundary conditions are given for each simulation run, we solve the Hamilton-Jacobi
equation in discrete space-time using a variational approach known as the Lax-Hopf formula in
Aubin et al. (2008), Claudel and Bayen (2010), and Han et al. (2012). Solution of the H-J equation
provides critical information on vehicle densities, speeds, and acceleration, which are then used, in
combination with a specific emissions model, to calculate the total emission rate at a link level.

In the next two subsections, Section 2.2.1 and Section 2.2.2, we will use two di↵erent emission
models to numerically validate the hypothesized macroscopic relationship between aggregated emis-
sion rate and link occupancy. Details on the simulations runs as well as methods for computing
emissions will be presented. Without loss of generality, all numerical simulations are performed for
a single link with a triangular fundamental diagram with the following parameters:

k = 13.33 meter/second, w = 4.44 meter/second, ⇢jam = 0.4 vehicle/meter, C = 1.33 vehicle/second

where k denotes the free-flow speed, w is the speed of backward-propagating kinematic waves, ⇢jam

denotes the jam density, and C is the flow capacity.

2.2.1 The average-speed emission model

As our first emission model, we consider a relatively simple speed-based emission model expressed
as follows.

e
t

= ⌥(v) (2.36)

where v (in mile/hour) is the (average) velocity of the vehicle and e
t

(in gram/hour) is the cor-
responding emission rate. The aggregate emission rate (AER) on link I

l

at time t is calculated
as:

AER
l

(t) =

Z

b

l

a

l

⇢
l

(t, x)⌥
�

v
l

�

⇢
l

(t, x)
��

dx t 2 [0, T ] (2.37)

where the link I
l

is expressed as a spatial interval [a
l

, b
l

]; ⇢
l

(t, x) is the solution of the LWR PDE
(2.6) and represents vehicle density; and the velocity v

l

= v
l

�

⇢
l

(t, x)
�

is a function of density
defined via the fundamental diagram f

l

(·). The link occupancy N
l

(t) at each instance of time is
easily computed as

N
l

(t) =

Z

b

l

a

l

⇢
l

(t, x) dx t 2 [0, T ] (2.38)

1The terminologies ‘demand’ and ‘supply’ coincide with those articulated by Lebacque and Khoshyaran (1999, 2002).
In terms of solving the Hamilton-Jacobi equation equivalent to (2.6), the demand and supply curves correspond to
the notion of weak boundary conditions illustrated in Aubin et al. (2008).
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Another way of expressing the link occupancy is through the cumulative boundary curves as follows

N
l

(t) =

Z

t

0
f
l

(⇢
l

(s, a
l

)) ds�
Z

t

0
f
l

(⇢
l

(s, b
l

)) ds (2.39)

For the functional form of ⌥(v), we employ the speed-based model TRANSYT-7F for CO emis-
sions that has been used by several other studies in the literature by Benedek and Rilett (1998),
Penic and Upchurch (1992), and Nagurney et al. (2010), noting that other types of speed-based
emission models can be equally applied.

e
x

= 26.3009 · exp(0.009928 v)
v

(2.40)

where v is in miles/hour and e
x

(in grams/mile) is the amount of CO emissions per unit travel
distance. Note that the notation e

x

is meant to indicate that the emission rate is in terms of
amount per unit distance. This quantity can be easily converted to represent amount per unit time
(in grams/hour) by using the following trick.

e
t

=
@e

@t
=

@e

@x
· @x
@t

= e
x

· v = 26.3009 · exp(0.009928 v) (2.41)

Identity (2.41) is used to determine the emission rate when tra�c density is relatively stable, for
example, in a cell where density is uniformly distributed. The average emissions rate for the link is
then computed from (2.37).

Details of the simulation are as follows. We first randomly generate the demand and supply
functions for the upstream and downstream boundaries of the link, respectively. The values of
demand and supply are uniformly distributed between zero and the link flow capacity to account
for di↵erent levels of congestion. Moreover, in order to be consistent with signal controls present
at both ends of the link, we generate “red” and “green” periods to control cars that enter or exit
the link of interest. The lengths of those “red” or “green” periods are uniformly distributed within
[10, 40] (in seconds).

In a single simulation run, given a boundary condition, we solve the LWR PDE (2.6) by first
applying the variational method to the Hamilton-Jacobi equation (2.8) and then by di↵erentiating
the Moskowitz function. Alternatively, one may solve the scalar conservation law directly using the
Godunov scheme in Godunov (1959) or the cell transmission model in Daganzo (1994). Once vehicle
densities are available in discrete space and time, we then use the fundamental diagram to find the
corresponding vehicle speeds and come up with emission estimation according to (2.41) and (2.37).

The simulation result is shown in Figure 2, which contains 40,000 samples. There clearly exists
a macroscopic relationship between the link occupancy (LO) and the link aggregate emission rate
(AER). In addition, a simple regression shows that such relationship is a�ne, as shown below with
R2 = 0.9990:

AER = 26.13⇥ LO + 89.94

where AER is in gram/hour, and LO is in vehicle.
The well-defined a�ne relationship can be explained by the fact that the emission model only

takes into account the velocity, which varies between 0 and the free-flow speed 13.3 (meter/second).
Thus the emission rate of a single vehicle, according to formula (2.41), varies within [26.3, 30.0]
(gram/hour). With such a relatively small variation in the emission rate, the aggregate emission
rate on a link level is almost proportional to the number of vehicles present regardless of the spatial
distribution or the operational modes of those vehicles, which is predicted by the LWR model.
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Figure 2: The speed-based emission model: Scatter plot of link occupancy verses AER.

2.2.2 The modal emission model

The second emissions model that we consider directly accounts for the modal operation of a vehicle;
that is, the emissions are directly related to vehicle operating modes such as idle, steady-state
cruise, acceleration, and deceleration. This model relies on trajectories of moving vehicles, which
can be estimated from the LWR model. More specifically, let ⇢

l

(t, x) be the solution of the scalar
conservation law (2.6) on link I

l

; the local velocity v
l

(t, x) of vehicles is computed as v
l

(t, x) =
f
l

(⇢
l

(t, x))/⇢
l

(t, x). The acceleration/deceleration, a
l

(t, x), viewed as the derivative of the velocity
along the trajectory of a single vehicle, is computed as the material derivative in the Eulerian
coordinates:

a
l

(t, x) =
D

Dt
v
l

(t, x) = @
t

v
l

(t, x) + v
l

(t, x) · @
x

v
l

(t, x)

Since the quantities ⇢
l

(t, x) and v
l

(t, x) are in general non-di↵erentiable, they are approximated in
discrete time as finite di↵erences. Let {t

i

} and {x
j

} be discrete temporal and spatial grid points,
then we have

a
l

(t
i

, x
j

) =
v
l

(t
i+1, xj)� v

l

(t
i�1, xj)

2�t
+ v

l

(t
i

, x
j

) · vl(ti, xj+1)� v
l

(t
i

, x
j�1)

2�x
(2.42)

where �t and �x are constant time step and spatial step, respectively. According to the power
demand-based emission model proposed by Post et al. (1984), the overall instantaneous total power
demand Z (in kilowatts) for a vehicle with mass m (in kilograms) is given by

Z = (0.04 v + 0.5⇥ 10�3v2 + 10.8⇥ 10�6v3) +
m

1000

v

3.6

⇣ a

3.6
+ 9.81 sin ✓

⌘

(2.43)

where the above quantity is in kilowatts and ✓ denotes the roadway grade. The reader is also referred
to Barth et al. (1996) for an alternative description of the power demand function based on velocity
and acceleration. Post et al. (1984) also propose the following model of hydrocarbon emissions rate
for spark ignition vehicles:

r(t) =

(

52.8 + 4.2Z Z > 0

52.8 Z  0
(2.44)
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based on field experiments, where the emission rate r(t) is in grams/hour, and Z is in kilowatts.
Following the preceding discussion, we now compute the aggregate emission rate (AER) in

discrete time as
AER

l

(t
i

) =
X

j

⇢
l

(t
i

, x
j

)r
l

(t
i

, x
j

)

where r
l

(t
i

, x
j

) is the emission rate inside the j-th cell and is calculated using (2.42), (2.43), and
(2.44).

Our simulation results are shown in Figure 3, which contains 40,000 samples. Notice that al-
though with a larger variation than the previous case, we still observe a reasonable a�ne relationship
between the link occupancy and the AER. The best linear fit is given by

AER = 52.31⇥ LO + 318.63

with R2 = 0.9794.
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Figure 3: Scatter plot of link occupancy verses AER.

The larger variations in the AER are expected, as it is due to the highly nonlinear e↵ect caused
by vehicle acceleration and deceleration. In a typical signalized intersection modeled by the LWR
equation, the shock waves generated by signal timing cause stop-and-go patterns which greatly
increases vehicle acceleration/deceleration and hence emission amount. Moreover, these patterns are
dependent on the actual spatial configuration of the vehicle densities, which cannot be adequately
captured by the link occupancy.

A macroscopic relationship depicted in Figure 3 is more interesting from a robust optimization
perspective than that in Figure 2. The reason is that although all points are distributed within a
tube-shape region (see Figure 3), they are sparse in some places while dense in some others. An
uncertainty region that simply covers all these points may be too conservative, and a more e↵ective
approach calls for a careful calibration of the uncertainty set. This will be presented in our numerical
study in Section 2.5.
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2.3 Emission-related side constraints

In this section, we propose a set of emission-related constraints constructed in a data-driven manner
that employ robust optimization techniques to handle parameter errors arising from the macroscopic
relationship between emission rates and link occupancy, as we observed in the previous section. In
addition, we show that when this relationship can be captured by an a�ne or a convex/concave
piecewise a�ne function, the resulting set of emission-related constraints can maintain linearity.
Using notations established in Section 2.1.4, we let N

i

(t) = N
i,up

(t)�N
i,down

(t) be the total number
of vehicles on link I

i

2 I at time t; in other words, it denotes the link occupancy in units of vehicles.
The time-varying total emission rates on link I

i

is denoted by ✏
i

(t). Although our previous numerical
simulations suggest an approximately a�ne relationship between N

i

(t) and ✏
i

(t), in the following
derivation of emission constraints we assume a more general functional form for such relationship,
so that the proposed methodology will apply to a class of more general macroscopic relationships.

We assume that such a relationship is approximated by a polynomial with power L, where the
approximation is based on regression analysis or other types of curve-fitting techniques:

✏
i

(a, N
i

(t)) =
L
X

l=0

a
l

(N
i

(t))l = aTN
i

(t) for all I
i

2 I, for all t 2 [0, T ]. (2.45)

Here a
.
= (a0, a1, . . . , aL)T is the vector of coe�cients in the polynomial, andN

i

(t)
.
=
�

(N
i

(t))0, . . . , (N
i

(t))L
�

.
With these notations, in order to ensure that the total emission amount at each link at any time
is constrained by an arbitrarily prescribed level, we have the emission side constraint for link I

i

expressed as

Z

T

0
✏
i

(a, N
i

(t))dt  E
i

for all I
i

2 I, for all t 2 [0, T ] (2.46)

Such a constraint requires that the emission amount is below some critical value E
i

for any link
I
i

. Notice that such constraints can be easily transformed to address other types of environmental
considerations, including:

• the total emissions on the entire network is bounded by some given value, and

• the di↵erences among total emissions of all links are bounded.

The second case ensures that no link (or the neighborhood near that link) su↵ers much more than
other links in terms of air quality. Such an issue is identified by Benedek and Rilett (1998) as
environmental equity.

In addition, the formulation is also easily extendable to the case where the emission criteria are
disutilities to be minimized. In such a case, we may invoke the “epigraph reformulation”.

2.3.1 Side constraints considering errors

In (2.46), approximation is involved in the relationship between the vehicle number and the emission
amount. In order to ensure that the emission constraint is satisfied even with parameter errors, the
following robust constraint is of our interest, instead:

Z

T

0
✏
i

(a(t), N
i

(t))dt  E
i

for all a(t) 2 ⌘
a

(2.47)
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Such a constraint corresponds to the notion of robust optimization in the sense that the emission
amount on link I

i

is restricted to an upper bound with any possible realization of the parameter
a(t). Here by allowing the coe�cient a(t) = (a

l

(t) : 0  l  L) to be varied over time, we have

✏
i

(a(t), N
i

(t)) =
L
X

l=0

a
l

(t)(N
i

(t))l (2.48)

and ⌘
a

is specified as a budget-like uncertainty set, which is similar to that proposed by Atamtürk
and Zhang (2007):

⌘
a

=

(

a : L
l

 a
l

(t)  U
l

, for all 0  l  L,
L
X

l=1

Z

T

0
a
l

(t) dt  T
PL

l=1 Ul

�

)

(2.49)

where L
l

and U
l

, 0  l  L, are lower and upper bounds of the coe�cients and

� 2
"

1,
L
X

l=0

U
l

/
L
X

l=0

L
l

#

(2.50)

In (2.50), the upper bound on � ensures that the uncertainty set expressed in (2.49) is nonempty.
This can be easily seen by manipulating the last inequality of (2.49):

L
X

l=1

T · L
l


L
X

l=1

Z

T

0
a
l

(t) dt  T
PL

l=1 Ul

�

Thus � must not exceed
PL

l=0 Ul

/
PL

l=0 Ll

.
The uncertainty set in (2.49) consists of two types of constraints: (1) a box constraint prescribing

the upper bound and the lower bound of the uncertain parameters, and (2) a constraint that
prescribes the sums of uncertain coe�cients in the l-th order terms 1  l  L to be bounded
from above (the last constraint in (2.49)). With just the first type of constraints, the RO will
generate the most conservative solution by predicting that all the uncertain parameters are realized
at the extreme case against the decision maker. However, such a worst case occurs only with a very
low probability in a realistic system, and this conservative solution is most likely to compromise
the performance of the resulting system. Use of the second type of constraint can reduce the
conservatism by excluding some of the extreme and rare cases.

The second type of constraint is made flexible by adjusting the value of �. Specifically, a higher
value of � means a smaller uncertainty set, which results in solutions that are more risk-prone (less
conservative). In the most conservative case, i.e., � = 1, the last constraint in (2.49) is out of e↵ect.
Bandi and Bertismas (2012) and Bertsimas et al. (2014) provide data-driven approaches based on
probability theory and statistical tests to determine the parameterization of the uncertainty sets
in accordance with the observed data. Those approaches provide guarantees for the satisfaction
of constraints in a probabilistic sense. We would like to further remark that the second type of
constraint may also capture potential correlations among a

l

(t), 0  l  L. However, due to space
limitation this aspect of research will not be elaborated upon in this report.

By writing (2.49) we have implicitly assumed that coe�cients associated with the zeroth-order
term are not correlated with the other coe�cients (the summation starts from l = 1 instead of l = 0).
Even though this implicit assumption will result in a more risk-averse formulation, it has a smaller
number of constraints and thus lower computational overhead. Details of the reformulation without
this assumption will not be provided, but the consequent generalization is a trivial extension.
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2.3.2 Discretization and explicit reformulation

Constraint (2.47) can be time-discretized into the following form, where �t denotes the time step.

N

X

k=1

L
X

l=0

a
l,k

(N
i,k

)l�t  E
i

for all â 2 ⌘̂
a

(2.51)

where a
l,k

corresponds to a
l

(·) at the k-th time interval, and â := (a
l,k

: 0  l  L, 1  k  N).
The discrete-time version of the uncertainty set is

⌘̂
a

=

(

â : L
l

 a
l,k

 U
l

, for all 0  l  L, 1  k  N,
N

X

k=1

L
X

l=1

a
l,k

�t  T
PL

l=1 Ul

�

)

(2.52)

The constraint (2.51) is in fact a semi-infinite constraint with an infinite index set, which is not
directly computable. The following theorem gives its computable reformulation.

Theorem 2.3. Let �1 < L
l

< U
l

< 1 for all 0  l  L. If ⌘̂
a

has nonempty interior, the
semi-infinite constraint (2.51) is equivalent to the following set of constraints:

L
X

l=1

N

X

k=1

�
l,k

U
l

�
L
X

l=1

N

X

k=1

�
l,k

L
l

+
T
PL

l=1 Ul

��t
✓ +

N

X

k=1

U0 �t  E
i

(2.53)

s.t. �
l,k

� �
l,k

+ ✓ = (N
i,k

)l�t for all 1  l  L, 1  k  N (2.54)

�
l,k

, �
l,k

, ✓ � 0 for all 1  l  L, 1  k  N (2.55)

where �
l,k

, �
l,k

and ✓ are dummy variables.

Proof. Constraint (2.51) can be trivially rewritten as:

max
â2⌘̂

a

N

X

k=1

L
X

l=1

a
l,k

(N
i,k

)l�t+ max
â2⌘̂

a

N

X

k=1

a0,k(Ni,k

)0�t  E
i

, (2.56)

which is equivalent to

max
â2⌘̂

a

N

X

k=1

L
X

l=1

a
l,k

(N
i,k

)l�t  E
i

�
N

X

k=1

U0�t. (2.57)

The evaluation of the constraint function involves solving a parametric problem of the form:

max
â

N

X

k=1

L
X

l=1

a
l,k

(N
i,k

)l�t (2.58)

s.t. a
l,k

 U
l

, for all 0  l  L, 1  k  N (2.59)

a
l,k

� L
l

, for all 0  l  L, 1  k  N (2.60)

N

X

k=1

L
X

l=1

a
l,k

�t  T
PL

l=1 Ul

�
(2.61)
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where we treat the N
i,k

as a constant parameter. Program (2.58)-(2.61) has a dual problem of the
following:

min
D

L
X

l=1

N

X

k=1

�
l,k

U
l

�
L
X

l=1

N

X

k=1

�
l,k

L
l

+
T
PL

l=1 Ul

��t
✓ (2.62)

s.t. �
l,k

� �
l,k

+ ✓ = (N
i,k

)l�t for all 1  l  L, 1  k  N (2.63)

�
l,k

, �
l,k

, ✓ � 0 for all 1  l  L, 1  k  N (2.64)

where �
l,k

, �
l,k

and ✓ are dual variables corresponding to constraints (2.59), (2.60), and (2.61)
Under the assumption that ⌘̂

a

has nonempty interior, by noticing the compactness of ⌘̂
a

, the primal
program (2.58)-(2.61) and the dual program (2.62)-(2.64) have finite solutions and zero duality gap.
Moreover, by duality, the objective value of any feasible solution to the dual problem (2.62)-(2.64)
provides upper bounds to the primal problem (2.58)-(2.61). Therefore, if there exist �

l,k

, �
l,k

and ✓
such that (2.63)-(2.64) are satisfied, then if N

i,k

satisfy (2.53), then (2.57) is satisfied.
On the other hand, if there exists N

i,k

that satisfy (2.57), then the objective value of the optimal
solution to the parametric problem (2.58)-(2.61) is bounded above and thus there exists �

l,k

, �
l,k

and ✓ such that (2.63)-(2.64) are satisfied. Thus, the equivalence of interest is proved.

Remark 2.4. The above theorem is based on the discussions in Ben-Tal and Nemirovski (1999)
and Bertsimas et al. (2011a). With this reformulation, the original semi-infinite constraint is now
computable with standard nonlinear programming techniques. We refer to the reformulated program
with constraints (2.53)-(2.55) as the robust counterpart to the original robust problem.

2.3.3 A special case when the relationship is a�ne

In a simple case where the relationship between the vehicle number and the emission rate is approx-
imately a�ne, the robust reformulation discussed previously can be considerably simplified. Indeed,
we can reduce (2.47) to

Z

T

0
[a1(t) (Ni

(t)) + a0(t)]dt

=

Z

T

0
[a1(t) (Nup,i

(t)�N
down,i

(t)) + a0(t)]dt  E
i

, for all (a0(t), a1(t)) 2 ⌘
a

(2.65)

where

⌘
a

=

⇢

(a0(t), a1(t)) : L
l

 a
l

(t)  U
l

, l = 0, 1,

Z

T

0
a1(t)dt 

TU1

�
=

N�tU1

�

�

(2.66)

With time-discretization, we have the following formulation,

N

X

k=1

2

4a1,k

0

@�t
k

X

j=0

q̄j
i

� �t
k

X

j=0

q̂j
i

1

A+ a0,k

3

5 �t  E
i

for all (a0, a1) 2 ⌘̂
a

(2.67)

where a0 := (a0,k : 1  k  N), a1 := (a1,k : 1  k  N). The uncertainty set is given as

⌘̂
a

=

(

(a0, a1) : L0  a0,k  U0, L1  a1,k  U1, for all 1  k  N,
N

X

k=1

a1,k  NU1

�

)

(2.68)

With the above uncertainty set, we have the following reformulation treated as a special case of
Theorem 2.3.
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Corollary 2.5. If ⌘̂
a

has nonempty interior, then the semi-infinite constraint (2.68) is equivalent
to the following set of constraints.

N

X

k=1

U1�
k

�
N

X

k=1

L1�
k

+
(N + 1)U1

�
✓ + (N + 1)U0 �t  E

i

(2.69)

✓ + �
k

� �
k

= �t2
k

X

j=0

q̄j
i

� �t2
k

X

j=0

q̂j
i

for all k = 0, 1, ..., N (2.70)

�
k

, �
k

, ✓ � 0 for all k = 0, 1, ..., N (2.71)

where �
k

, �
k

, ✓ are dual variables.

Once semi-infinite constraint (2.68) is reformulated as a finite set of linear constraints according
to the lemma above, the LWR-E problem with an a�ne macroscopic relationship can be formulated
and solved as a mixed-integer linear program.

2.3.4 Piecewise a�ne case relationship

To allow for additional flexibility in formulation while preserving the linearity in constraints, it is
of particular interest to consider the case when the aggregated relationship between emission rate
and the vehicle number is approximated by a piecewise a�ne function. In this subsection, we will
provide formulations that consider this piecewise a�ne relationship under either of two conditions:
(1) the relationship is convex piecewise a�ne, or (2) the relationship is concave piecewise a�ne.

Convex piecewise a�ne
We will show in the following that the previously presented reformulation can be easily extended

to the convex piecewise a�ne case. With some abuse of notations, we denote the function of emission
rate at each link I

i

at time t as:

✏
i

(b(t), N
i

(t)) := max
m2M

(b1,m(t) ·N
i

(t) + b0,m(t)) t 2 [0, T ]. (2.72)

where we denote by M the index set of the a�ne pieces that constitute the piecewise a�ne function.
In addition, we let b1,m(t) and b0,m(t) be the multiplier of the first- and zeroth-order term, respec-
tively, of the m-th a�ne piece for link I

i

. We further denote b(t) := (b
⌧,m

(t) : ⌧ 2 {0, 1}, m 2 M) at
time t 2 [0, T ]. Then, we are concerned with the following constraint that, again, the total emission
should be bounded from above by a user-specified level even at the worst-case scenarios:

Z

T

0
✏
i

(b(t), N
i

(t))dt  E
i

for all b 2 ⌘
b

(2.73)

where the budget uncertainty is employed by denoting

⌘
b

= {b : L
⌧,m

 b
⌧,m

(t)  U
⌧,m

, for all ⌧ 2 {0, 1}, m 2 M,

X

m2M

Z

T

0
b1,m(t) dt 

T
P

m2M U1,m

�

)

(2.74)

The constraint (2.73) can be immediately discretized as:

max
m2M

N

X

k=1

(b1,m,k

·N
i,k

+ b0,m,k

)�t  E
i

for all b̂ 2 ⌘̂
b

, t 2 [0, T ]. (2.75)
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where b̂ := (b
⌧,m,k

: ⌧ 2 {0, 1}, m 2 M, 1  k  N) while the discretized uncertainty set is given
by:

⌘̂
b

=
n

b̂ : L
⌧,m

 b
⌧,m,k

 U
⌧,m

, for all ⌧ 2 {0, 1}, m 2 M,

X

m2M

N

X

k=1

b1,m,k

�t 
T
P

m2M U1,m

�

)

(2.76)

The following theorem shows that the robust constraint (2.75) can be equivalently rewritten into a
set of linear constraints.

Theorem 2.6. Let �1 < L
⌧,m

< U
⌧,m

< 1 for all ⌧ 2 {0, 1} and m 2 M. If ⌘̂
b

has nonempty
interior, the semi-infinite constraint (2.75) is equivalent to the following set of constraints:
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L1,m�
k,m

+
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m2M U1,m

��t
✓
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+NU0,m �t  E
i

for all m 2 M (2.77)

✓
m

+ �
k,m

� �
k,m

= N
i,k

�t for all k = 0, 1, ..., N, m 2 M (2.78)

�
k,m

, �
k,m

, ✓
m

� 0 for all k = 0, 1, ..., N m 2 M (2.79)

where �
k,m

, �
k,m

and ✓
m

are dummy variables.

Proof. Notice that (2.75) can be immediately rewritten as

max
b2⌘

b

max
m2M

N

X

k=1

(b1,m,k

·N
i,k

+ b0,m,k

)  E
i

(2.80)

which, by switching the two “max” operators, is equivalent to

max
m2M

max
b2⌘

b

N

X

k=1

(b1,m,k

·N
i,k

+ b0,m,k

)  E
i

(2.81)

Notice that we can represent the above inequality by a set of inequalities:

max
b2⌘

b

N

X

k=1

(b1,m,k

·N
i,k

+ b0,m,k

)  E
i

m 2 M. (2.82)

We can then invoke the same duality-based approach as in proving Theorem 2.3 to represent (2.82)
by linear constraints:

N

X
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k,m

�
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k=1

L1,m�
k,m

+
T
P

m2M U1,m

��t
✓
m

+NU0,m �t  E
i

for all m 2 M (2.83)

✓
m

+ �
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� �
k,m

= N
i,k

�t for all k = 0, 1, ..., N, m 2 M (2.84)

�
k,m

, �
k,m

, ✓
m

� 0 for all k = 0, 1, ..., N m 2 M (2.85)

where �
k,m

, �
k,m

and ✓
m

are dual variables of the maximization problem involved in the left-hand
side of the inequalities (2.82). The above formulation immediately provides the desired result.
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Again, the above theorem provides a computable formulation that preserves linearity even if
the relationship between emission rate and vehicle count is captured by a specific type of nonlinear
function.

Concave piecewise a�ne relationship
We will show in the following that when the relationship between the emission rate and the

vehicle number becomes concave, as a special case of being nonconvex, we can still maintain the
linearity in the constraints by introducing additional integer variables and some modifications to
the uncertainty sets.

Specifically, we redefine ✏
i

by

✏
i

(b(t), N
i

(t)) := min
m2M

(b1,m(t) ·N
i

(t) + b0,m(t)) t 2 [0, T ]. (2.86)

where all other notations remains the same as in subsection 2.3.4. Then, we are interested in the
following constraint:

Z

T

0
✏
i

(b(t), N
i

(t))dt  E
i

for all b 2 ⌘
b

, t 2 [0, T ] (2.87)

where we have a modified uncertainty set ⌘
b

defined as ⌘
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where b
m

:= (b
⌧,m

: ⌧ 2 {0, 1}). This uncertainty set di↵erentiates from that in the previous
subsection in that the uncertain parameters for di↵erent pieces of a�ne functions are uncorrelated,
namely, the constraints for the uncertain parameters of di↵erent a�ne pieces in the uncertainty set
are decoupled. A natural discretization to this constraint will give us:
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where b̂
m

:= (b
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Evidently, constraint (2.89) is the same as stipulating that

max
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b

min
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·N
i,k

+ b0,m,k

)�t  E
i

, for all I
i

2 I. (2.91)

Notice that, when we fix a feasible sequence of {N
i,k

: 1  k  N}, the left-hand side of this
inequality can be rewritten as:
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where V := {� = (�
m

: m 2 M) 2 Rm : 1>� = 1, � � 0}. Since F(b̂, �) is convex in � and
concave in b̂, we can switch the “max” and “min” operator to obtain a dual problem without duality
gap, i.e.,

max
b̂2⌘̂

b

min
�2V

F(b̂, �) = min
�2V

max
b̂2⌘̂

b

F(b̂, �) (2.93)

for any feasible sequence of {N
i,k

: 1  k  N}. Therefore, constraint (2.89) is equivalently restated
as,
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which can be rewritten as, for all I
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E
i

. (2.98)

Notice that the second last line above is obtained under the assumption that the uncertainty sets
for the parameters of di↵erent a�ne pieces are decoupled. This constraint dictates that a feasible
solution to the signal control model should satisfy at least one piece of the a�ne functions when the
uncertain parameter is the most adversarial. Such a constraint can be represented by a set of linear
constraints involving “big-M” approach and additional binary variables:
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where M 2 R+ is a su�ciently large number. Then, we can again apply the same duality-based
procedures as in proving Theorem 2.3 and 2.6 to obtain computable reformulations that maintain
linearity.
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where �
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, �
k,m

and ✓
m

are dummy variables.
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Remark 2.8. The concave piecewise a�ne relationship results in nonconvex constraints, which can
generate a substantial computational challenge. In fact, those constraints cannot be well handled by
the existing commercial solvers, including CPLEX and Gurobi. Nonetheless, with the above theorem,
we can again retain linearity by introducing additional integer variables. Further notice that due to
constraint (2.101), these integer variables are highly correlated so that the search space of the problem
grows only by a scale of |M|. Therefore, our reformulation significantly reduces the computational
ramifications of handling a set of nonconvex constraints.

2.3.5 Some Discussions in Modeling Generalization

As mentioned in the introduction, the model can be easily extended to capture two other di↵erent
scenarios that are of application importance: (1) when the di↵erences between link emissions is to
be constrained, i.e., the so called equity constraint; and (2) when the total emission amount of all
links is to be minimized.

2.4 Equity Constraints

The equity constraint might occur when the planner of the tra�c system would like to enforce
emissions to be distributed evenly across all the links in a network. To capture this enforcement,
we consider the following constraint:
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2 I, I
j

, (2.104)

where, for now, we assume no uncertainty in the parameters a
i

and a
j

. By stipulating an a�ne
relationship between emission rate and vehicle number, this constraint can be immediately rewritten
into
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(t))� (N
up,j

(t)�N
down,j

(t))] + a0(t)} dt  E
ij

for all I
i

2 I, I
j

,

(2.105)

If ✏
i

and ✏
j

are given as a�ne functions, the same set of arguments as in Theorem 2.3 can be
immediately extended to handle the equality constraint. Now, we allow a(t) to be uncertain and
the uncertainty is constrained within the budget uncertainty set (2.49). Then the robust constraint
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becomes immediately a special case of (2.46).

2.4.1 Minimizing emission-related criteria

The proposed model is also easily extendable to the case where the emission criteria are disutilities
to be minimized. In such a case, we will invoke the “epigraph reformulation.” For example, if the
objective is to minimize the total emission amount on a certain link I

i

with I
i

, instead of minimizing
R

T

0 ✏
i

(a, N
i

(t))dt, we can minimize a dummy variable z with one additional constraint for the feasible

region
R

T

0 ✏
i

(a, N
i

(t))dt  z. This additional constraint conforms with (2.46).
Combining the above observation with subsection 2.4, we see the proposed model also applies

to the case where the di↵erence among the emission amount (equity) of di↵erent links is to be
minimized (maximized).
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2.5 Numerical Study

2.5.1 Network setup

In this section, we consider a hypothetical network consisting of four intersections, three of which
are signalized; see Figure 4. The ten links in the network have the same triangular fundamental
diagram, whose parameters are shown in Table 1. In addition, all links have the same length of
400 meters. For simplicity, we assume that routing is such that vehicles at all intersections have a
fixed probability of selecting either of the two downstream approaches, and the turning ratios are
specified as follows.

↵1,5 = 0.50, ↵3,5 = 0.40, ↵2,6 = 0.30, ↵5,6 = 0.50, ↵10,3 = 0.53

Note that this assumption is not essential to our formulation or computation, but was made to
simplify the presentation of results. The time horizon of our numerical example is a 15-minute time
period, with a time step of 10 seconds.

In order to test the e↵ectiveness of the proposed signal timing in reducing both congestion and
emission under di↵erent levels of network loads, we consider three scenarios with three di↵erent
demand profiles at the upstream end of all boundary links. The demand profile in the first scenario,
which is shown in Figure 4, corresponds to the lightest tra�c load. For the second and third demand
profiles, we uniformly increase all the boundary flows in the first scenario by a constant. Table 2
shows the ratios of boundary flows and the link flow capacity.
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Link 10

Figure 4: Test network (left); and the demand profile corresponding to Scenario I (right).

Free-flow speed Jam density Critical density Flow capacity
(meter/second) (vehicle/meter) (vehicle/meter) (vehicle/second)

Triangular fd 40/3 0.4 0.1 4/3

Table 1: Link parameters. The fundamental diagram is triangular.
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Scenario I (light) Scenario II (medium) Scenario III (heavy)
Link 1 53.1 % 60.6 % 64.4 %
Link 2 43.7 % 51.2 % 54.9 %
Link 10 51.6 % 68.4 % 83.38 %

Table 2: Demand profiles in the three scenarios with di↵erent tra�c loads. The values in the table
represent ratios of the average boundary flow and the flow capacity.

2.5.2 Calibrating the macroscopic relationship

The macroscopic relationship between the emission rate at a link level and the occupancy of the link
is specific to the type and characteristics of each link, and may be sensitive to link flow profile, signal
control, etc. Therefore, we need to identify this relationship using simulation and curve-fitting. To
determine this relationship for our numerical experiments, we employ the modal emission model
discussed in Section 2.2.2. This model was selected because it had a higher degree of uncertainty;
using the average speed model should provide even better results. The process described in Section
2.2 was repeated to determine the aggregate emissions rate for each link. Again, this process included
the random generation of binary variables to simulate the impact of tra�c signals and the resulting
stop-and-go waves that they would create along the link. Note that we perform this process here
for a single link, noting that the other links are identical.

The simulation contains 42, 000 samples, all of which are plotted in Figure 5. The macroscopic
relationship is approximately a�ne with the following regression coe�cients

AER = a1 ⇥ LO + a0 = 52.31⇥ LO + 318.63 (2.107)

with an R2 value of 0.9794, where AER (in grams/hour) denotes the aggregated emission rate of
hydrocarbon on a link level; LO (in number of vehicles) denotes the link occupancy.
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Figure 5: Scatter plot of sample points from simulation. The solid line represents the upper envelope
of the uncertainty region; the dashed line represent the lower envelope of the uncertainty region.

The high R2 value indicates that we can indeed approximate this macroscopic relationship with
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an a�ne model. In order to construct the uncertainty set of the form (2.68) for the robust opti-
mization counterpart, we select the following lower and upper bounds for the a�ne coe�cients:

L1  a1  U1, L0  a0  U0 (2.108)

where
L0 = 0, U0 = 400, L1 = 53.3, U1 = 66 (2.109)

The corresponding lower envelope (by letting a1 = 53.3, a0 = 0) and upper envelope (by letting
a1 = 66, a0 = 400) of the uncertain region are now shown in Figure 5. Notice that one has a lot of
freedom in choosing these upper and lower bounds; however, they do a↵ect the performance of the
resulting RO program. As we commented in Section 2.3.3, the upper envelope set a worse-case value
for the emission rates, and it is likely to overestimate the emission rates for some/most scenarios.
From Figure 5 we see that while the upper envelope provides a tight bound on the emission rates
when the tra�c is relatively light (i.e., 0  LO  40 vehicles), it tends to mostly overestimate
the emission rates when the tra�c volume grows (i.e., LO � 40 vehicles). To avoid the robust
constraints being too conservative, we invoke the parameter � introduced in (2.68) to adjust the
conservativeness by allowing some realized coe�cients a1,k to be strictly less than the upper bound
U1, that is,

N

X

k=1

a1,k  N
U1

�
for some � 2



1,
U1

L1

�

(2.110)

where a1,k can be interpreted as the first-order coe�cient in an actual (realized) instance of the
relationship between LO

k

and AER
k

; here the subscript k indicates the k-th time step. A general
rule of thumb is that the more the upper bound seems to overestimate, the larger � should be,
although ideally such choice should be specifically quantified and even optimized based on available
data. The interested reader is referred to Bandi and Bertismas (2012) and Bertsimas et al. (2014)
for some discussions on data-driven calibration of the uncertainty set. In our particular example,
we choose � = 1.2. Other choices of � could also be considered but will not be elaborated in this
report.

Notice that the region formed by the lower and upper envelopes does not contain all sample
points. However, the majority (96.06%) of these points fall within this region, and we treat the rest
as outliers. The reason is that these outliers, which make up just 3.94% of the total estimates, are
sparsely distributed outside (and consistently above) the uncertainty region. Including these values
within our uncertainty set would make our estimation too conservative by considering the (very
small) chance that these emission rates occur.

The uncertainty set for the robust optimization, according to (2.68), is therefore constructed as
follows.

⌘̂
a,i

=

(

(a0,k, a1,k) : 0  a0,k  400, 53.3  a1,k  66, for all 1  k  N,
N

X

k=1

a1,k  55N

)

(2.111)
for all link I

i

2 I in the network. By virtue of Corollary 2.5, the above semi-infinite constraint set
transforms to a finite set of linear constraints, which are part of a mixed-integer linear program.

2.5.3 The base case

For comparison purposes, we first consider a base case where the tra�c signal timing is optimized,
without any emission considerations. This is achieved by simply solving the mixed-integer linear
program introduced in Section 2.1.5, namely, with constraints (2.27)-(2.30) and (2.32)-(2.35). Since
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the base case is mainly concerned with maximizing network throughput and minimizing delays, we
adopt the following form for the objective function.

max
N

X

k=1

1

1 + k

⇣

q̂k7 + q̂k8 + q̂k9

⌘

(2.112)

where q̂i7, q̂
i

8 and q̂i9 are the exit flows at the i-th time step on links 7, 8, and 9, respectively. An
objective function of the form (2.112) tends to maximize the network throughput at any instance
of time, and is commonly employed in the literature on network optimization (Han et al., 2013,
2014a,b).

Scenario I

Objective value 5.331

HC emissions (gram)
link 1 link 2 link 3 link 4 link 5 link 6
390.5 309.1 208.6 158.7 343.4 210.2

Total emission 1620.5 (gram)

Scenario II

Objective value 6.615

HC emissions (gram)
link 1 link 2 link 3 link 4 link 5 link 6
558.0 400.4 263.5 214.3 514.8 252.9

Total emission 2203.9 (gram)

Scenario III

Objective value 7.142

HC emissions (gram)
link 1 link 2 link 3 link 4 link 5 link 6
1359.2 430.6 560.1 269.1 553.0 252.7

Total emission 3424.7 (gram)

Table 3: Objective value and hydrocarbon (HC) emissions in the base case. Three scenarios with
three di↵erent demand profiles are considered. The objective value measures the throughput of the
network and is calculated from expression (2.112).

The results of the base case corresponding to three demand profiles are summarized in Table
32. The results also include a hydrocarbon emission amount on each link, which is calculated from
the resulting link flows and the detailed modal emission model elaborated in Section 2.2.2. The
purpose of this table is two-fold: (1) to enable the comparison with the emission-constrained results
presented later, and (2) to suggest appropriate upper bounds on the emission amount for the robust
optimization. In presenting our results, we only consider links 1 through 6, since the rest of the
links are not directly controlled by the signals under consideration.

2.5.4 Simultaneous control of tra�c and emission of hydrocarbon

In this subsection, we solve the signal optimization problem with emission side constraints; such
problem is referred to as an LWR-E problem. This is achieved by solving the MILP for the base
case with additional emission-related robust counterpart expressed by (2.68)-(2.70), where the values
selected for the lower and upper bounds are presented in (2.108)-(2.109). In view of the base case
summarized in Table 3, we chose the following upper bounds (in grams) on the emission amount for
each link, where bounds strictly below the corresponding emissions in the base case are highlighted

2Throughout this numerical study, the MILPs were solved with ILOG Cplex 12.1.0, which ran with Intel Xeon
X5675 Six-Core 3.06 GHz processor provided by the Penn State Research Computing and Cyberinfrastructure.
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in boldface.

Scenario I: E1 = 390, E2 = 310, E3 = 210, E4 = 160, E5 = 310, E6 = 240

Scenario II: E1 = 600, E2 = 380, E3 = 300, E4 = 210, E5 = 490, E6 = 250

Scenario III: E1 = 1100, E2 = 440, E3 = 750, E4 = 300, E5 = 600, E6 = 300

Notice that we did not set all the bounds to be strictly below the actual emissions in the base
case. This is because all the links in the network are in conflict with one another in the sense that
releasing vehicles from one approach will block the vehicles in the conflicting approach to the same
intersection. Thus any signal control strategy is unlikely to simultaneously reduce the emission on
all links. In fact, setting the bounds to be strictly below the actual emissions in the base case leads
to infeasible problems in most of our calculations.

Scenario I

Objective value 5.330 (0.02% less than the base case)

HC emissions (grams)
link 1 link 2 link 3 link 4 link 5 link 6

(upper bound)
390.2 313.3 204.8 161.3 289.8 229.0
(390) (310) (210) (160) (310) (240)

Total emission 1588.4 grams (1.98% less than the base case)

Scenario II

Objective value 6.612 (0.05% less than the base case)

HC emissions (grams)
link 1 link 2 link 3 link 4 link 5 link 6

(upper bound)
598.5 369.2 303.8 214.6 443.8 247.1
(600) (380) (300) (210) (490) (250)

Total emission 2157.0 grams (2.12% less than the base case)

Scenario III

Objective value 7.058 (1.18% less than the base case)

HC emissions (grams)
link 1 link 2 link 3 link 4 link 5 link 6

(upper bound)
1160.5 434.6 756.4 272.1 622.2 294.5
(1100) (440) (750) (300) (600) (300)

Total emission 3540.3 grams (3.38% more than the base case)

Table 4: Objective value and hydrocarbon (HC) emissions in the LWR-E case.

The results of the proposed MILP formulation for the emission-constrained signal optimization
are summarized in Table 4. We see that for all three scenarios, our proposed signal optimization
scheme e↵ectively keeps the emissions below the prescribed level, and this is done at a relatively
small cost to the overall throughput of the network; that is, compared with the base case, the
objective values in the LWR-E case decrease by only 0.02%, 0.05%, and 1.18% in Scenarios I, II,
and III, respectively.3 In addition, for Scenarios I and II, bounding the emission amount on certain
links successfully reduces the total emission on the entire network by 1.98% and 2.12%, respectively.

In Scenario 3, where the tra�c load becomes heavy, we observe that a local reduction of emission
(on link 1 where emission has been reduced from 1359 grams to 1160 grams) results in an overall
increase in the total emission on the network. Moreover, the total network throughput su↵ers
more than the previous two scenarios. Such a Braess-like paradox is understandable in that an
improvement on a single link will inevitably a↵ect adjacent links, and such e↵ect may propagate
through the network in a highly nonlinear way if the tra�c load is heavy. This phenomenon thus

3Recall that while lower total emissions are desired, the objective function is such that a lower value represents a
worse scenario.
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calls for a well-balanced and/or multi-objective optimization of signalized networks with emission
considerations. A visualization of the emission profiles for all test scenarios is provided in Figure 6.
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Figure 6: Comparisons of link-specific HC emissions in the base cases and the emission-constrained
(LWR-E) cases.

We also see from Table 4 that a few emission constraints are slightly violated; this is expected by
the nature of our formulation: 1) in the calibration of the macroscopic relationship in Section 2.5.2,
a few data points that lie outside the uncertainty region are not accounted for in our formulation;
2) we chose the parameter � to be larger than 1 (see (2.110)), which means that the approach taken
to handle the uncertainty in the AER is relatively less conservative and could lead to, with a small
probability, violation of the constraints. We present a quantification of the violations in Table 5 for
all the links in all three scenarios, which ensures that the violations of the constraints are within an
acceptable range.

link 1 link 2 link 3 link 4 link 5 link 6
Scenario I 0.05% 1.06% - 0.81% - -
Scenario II - - 1.27% 2.19% - -
Scenario III 5.45% - 0.85% - 3.70% -

Table 5: Violations of the emission constraints. “-” means that the actual emission is below the
bound.

In order to further analyze emissions mechanism and the ability of tra�c signal control to
reduce overall emissions, we will look at a particular intersection, which is Node B (see Figure 4)
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from Scenario II. In order to enable a visualization of the congestion and emissions on links 2 and
5 connected to Node B, we compute their respective Moskowitz functions N2(t, x) and N5(t, x) for
both the base case and the LWR-E case. These functions are presented in Figure 7. The surface of
each Moskowitz function is separated by a clear shock wave into two domains: the uncongested region
and the congested region. The separating shock wave travels back and forth as a result of constantly
changing downstream boundary conditions caused by the signal control. We can also observe the
time-varying queue lengths near the intersection. From Figure 7 we see that the separating shocks
on link 2 in both the base case and the LWR-E case stay closely to the exits (left boundaries) of the
links, indicating that link 2 is mostly in the free-flow phase. On the other hand, link 5 in both the
base case and the LWR-E case is more congested.

Figure 7: The Moskowitz functions of link 3 in the base case (left) and the LWR-E case (right).

Since the Moskowitz functions N2(t, x) and N5(t, x) represent the Lagrangian labels of vehicles
passing through location x at time t, its contour lines should represent the spatial-temporal trajec-
tories of moving particles. In order to better observe the stop-and-go waves near the intersection,
we present in Figure 8 the contour lines of the Moskowitz functions in the base case and the LWR-E
case. We see that, for both link 2 and link 5, the LWR-E case has fewer vehicle stops than the base
case. To confirm this, we perform the following simple calculation: the number of stops (represented
by the vertical line segments in the figures) in the base case is roughly 17 (link 2) and 76 (link 5),
while the number of stops in the LWR-E case is roughly 5 (link 2) and 52 (link 5). Given that there
are 50 contour lines in each figure, we estimate that the average number of stops per vehicle is 0.34
(link 2) and 1.52 (link 5) in the base case, and 0.1 (link 2) and 1.04 (link 5) in the LWR-E case.
The total emission in the LWR-E case is thus reduced as vehicle stops and acceleration/deceleration
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associated has been reduced by the signal controls.
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Figure 8: Contour lines of the Moskowitz functions of link 2 (left column) and link 5 (right column),
in the base case (top row) and the LWR-E case (bottom row).
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2.6 Conclusion

This project proposes a novel robust optimization approach to address emission-related side con-
straints, in the formulation of a link-based mathematical programming problem for tra�c signal
control. We take advantage of an empirical relationship between the aggregated emission rate and
the link occupancy, and treat the error as modeling uncertainty, which is then handled by the RO
technique. Such a computational apparatus turns the otherwise non-convex emission side constraints
into explicit and tractable forms.

Further research is underway to (1) validate the linear or polynomial relationships among cer-
tain macroscopic tra�c quantities, from both statistical and analytical points of view; (2) reveal
additional correlations between aggregated emission rate and certain tra�c quantities that may fa-
cilitate the computational e�ciency and tractability of the math programs; and (3) develop heuristic
algorithms and computational paradigms for real-time and large-scale deployment.

3 Dynamic Congestion and Tolls with Mobile Source Emission

3.1 Literature Review

3.1.1 Congestion Toll Pricing

The idea of employing toll pricing to mitigate both emission and congestion derives from congestion
pricing strategy in Pigou (1920). In the literature, toll pricing problems can be classified into two
categories: (1) first-best toll pricing (Arnott and Small, 1994; Hearn and Ramana, 1998; Dial, 1999;
2000), which tolls every arc in the network; and (2) second-best toll pricing (Lawphongpanich and
Hearn, 2004), which assumes that only a subset of the arcs is tolled for political or other reasons.
However, the literature above focused on toll pricing in static models (see a comprehensive review
for static road pricing in Yang and Huang, 2005), which considered only the route choice decisions
by the tra�c agents, as noted by Yao et al. (2012). A more comprehensive and realistic model ought
to take into account the time-dependent nature of tra�c flow and dynamic toll pricing. Dynamic
congestion pricing in bottleneck models were investigated by Arnott et al. (1990), Arnott and Kraus
(1998), Braid (1996) and De Palma and Lindsey (2000). Based on link-delay model (Friesz et al.
1993, 2011), Friesz et al. (2007) proposed an MPEC model and a solution approach to determine
the optimal second-best tolling strategy. Yao et al. (2012) further studied a dynamic congestion
pricing problem with demand uncertainty. A more comprehensive review on the existing dynamic
congestion pricing models and solution approaches was presented in Yao et al. (2012).

The above literature provided evidence for the e↵ectiveness of tolling strategies to stimulate and
optimize a tra�c network. In this project, we seek to further exploit such a strategy to minimize
both tra�c congestion and automobile-induced emission simultaneously. To do this, we provide a
multiobjective MPEC model of a second-best tolling strategy to determine the optimal toll price.
Such an MPEC model incorporates the LWR-Lax model proposed by Friesz et al. (2012) to capture
time-varying tra�c behaviors. To the best of our knowledge, this is the first attempt to employ
tolling to mitigate overall emission in the tra�c network, the first dynamic toll pricing model that
builds on LWR-Lax model in Friesz et al. (2012), and the first successful integration of LWR-Lax
model with mobile source emission model.

3.1.2 Dynamic User Equilibrium Model

In this project, we employ the simultaneous route and departure time-choice DUE model proposed
originally by Friesz et al. (1993). For the user equilibrium, unit travel cost, including early and late
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arrival penalties, is identical for those route and departure time choices selected by travelers between
a given origin-destination pair. Such problem was articulated and formulated as a variational
inequality (VI) in Firesz et al. (1993). The DUE model typically consists of two major components:
the VI formulation of equilibrium constraints and the network performance model known as the
dynamic network loading (DNL) sub-problem. The DNL aims at describing and predicting time
evolution of system states by introducing dynamics to the tra�c flows throughout the network. It
determines the delay operator which is a key component of the DUE model. The DUE model is
intertwined with the determination of path delay and thus the DNL.

Friesz et al. (2001) studied the DUE as a single-level problem by formulating it as a controlled
variational inequality. The DNL with link delay model (Friesz et al. 1993) and the route/departure
time choice were solved simultaneously. In addition, the necessary conditions for optimal control
problems with state-dependent time lags were derived. In Friesz and Mookherjee (2006), the theory
of optimal control and the theory of infinite dimensional VIs were combined to create an implicit fixed
point algorithm for calculating DUE. Friesz et al. (2011) extended the DUE problem from within-
day time scale to a day-to-day time scale and formulated the dual time scale DUE problems. In
Friesz et al. (2012), the Lighthill-Whitham-Richards model (Lighthill and Whitham 1955; Richards
1956) was employed in the DNL sub-problem, which was then formulated as a system of di↵erential
algebraic equations (DAEs) using the Lax-Hopf formula (Lax 1957; Evans 2010). The DUE problem
was solved e�ciently on reasonable size networks (Sioux Falls) with a realistic number of origin-
destination pairs and paths.

3.1.3 Mobile Source Emission Models

Modeling approaches of mobile source emission can be classified into three categories: microscopic,
macroscopic, and mesoscopic approaches. The microscopic emission models are relatively accurate:
they characterize the emission rate on the level of a single vehicle, based on the physical attributes
of the vehicle, driving behavior of the driver, as well as the surrounding environment. It is assumed
that the rate of emission e(t) of a car can be expressed as a function of instantaneous velocity v(t)
and acceleration a(t),

e(t) = f1
�

v(t), a(t)
�

. (3.113)

Such models can be easily calibrated and validated in the lab. There are several models based on
microscopic emission (Barth et al. 1996; Panis et al. 2006; Rakha et al. 2004). The drawback of
the microscopic modeling approach is the lack of measurement associated with each individual car’s
dynamic. On the other hand, it is relatively easy to measure the tra�c dynamics on a macroscopic
level. The macroscopic emission models (Ekström et al. 2004) express the average emission rate
ē(t) on a road segment as a function of the average density ⇢̄ and average velocity v̄(t) in that same
segment

ē(t) = f2
�

⇢̄(t), v̄(t)
�

(3.114)

The drawback of the macroscopic modeling approaches for emission lies in the fact that the model
is di�cult to calibrate and validate, due to the lack of measurement of emission rate on a road. The
third type of emission models, the mesoscopic emission model, approximates individual vehicles’
dynamics using macroscopic flow models and measurements. Then the total emission rate is the
aggregation of emission rates on a microscopic level, given by (3.113). The mesoscopic models
(Csikós et al. 2011; Csikós and Varga 2011; Zegeye et al. 2010) take the modeling advantages of
both macroscopic tra�c flow models and microscopic emission models, thus overcome the drawbacks
of the previous two approaches.

In this project, we employ the mesoscopic point of view for emission estimation and prediction
on a vehicular network. The emission estimation will be embedded in the Dynamic Network Loading
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sub-problem, which describes and predicts macroscopic tra�c variables given established path flows.
The DNL provides a basis for the comparison of various microscopic emission functions, among which
we distinguish between the two-argument functions e(t) = f1

�

v(t), a(t)
�

and the single-argument
functions e(t) = f3

�

v(t)
�

.
The two-argument functions, such as the one proposed in the Modal emission model (Barth

et al. 1996), use a physical approach that associates the power demand function to the various
driving conditions of the car such as low/high speed motion, acceleration, stop-and-go, etc. The
emission and fuel consumption functions are then expressed as a�ne functions of the power demand.
Such model is very accurate, and can account for vehicles of di↵erent types. However, it is relatively
di�cult to integrate the modal model into macroscopic tra�c flow models. In particular, the higher-
order tra�c quantities such as acceleration cannot be su�ciently captured by first order models such
as the Lighthill-Whitham-Richards conservation law (Lighthill and Whitham 1955; Richards 1956);
see Section 3.4.1 for more discussion.

The one-argument emission functions on the other hand, usually rely on the average speed. In
Rose et al. (1965), it was shown that when a vehicle’s travel speed is under 80km/hour, the relation
between speed v (km/hour) and HC/CO emissions e

x

(pound/km) can be approximated by (for
now and sequel, e

x

denote the emission per unit distance).

e
x

= b1 v
�b2 (3.115)

where b1, b2 are parameters depending on vehicle type and surrounding environment. Kent and
Mudford (1979) collected driving pattern data in Sydney and found that NO

y

emission ẽ
x

can be
modeled by

ẽ
x

= b̃1 +
b̃2
v

(3.116)

According to the Emission Factor Model 2000 (CARB 2000) by California Air Resources Board,
constantly updated since 1988, the hot running emissions per unit distance

ê
x

= BER⇥ exp
n

b̂1(v � 17.03) + b̂2(v � 17.03)2
o

(3.117)

where BER stands for basic emission rates, which are constants associated with CO, NO
y

, HC.
The unit of velocity is miles/hour, the unit of ê

x

is grams/mile.

3.2 Numerical Techniques for MPEC

MPECs, with its bi-level nature, often create computational di�culty. A common approach to
compute an MPEC is to formulate the bi-level program into a mathematical program with comple-
mentarity constraints (MPCC) (see examples in Ban et al., 2006, and Friesz, 2010). However, as
noted in Rodrigues and Monteiro (2006) and in Ban et al. (2006), the complementarity constraints
might lose certain constraint qualifications. To resolve this issue, some regularization techniques were
proposed. Ralph and Wright (2003) studied a relaxation approach, which was applied by Ban et
al. (2006) to solve a continuous network design problem. Anitescu (2000) proposed a l1-penalty ap-
proach and studied its impact on the convergence of an interior point algorithm, while Monteiro and
Meira (2011) tested a quadratic penalty function. According to their numerical results, quadratic
penalty was a promising approach to handle complementarity constraints. However, discussions
above all focused on MPCC in the context of finite dimensional programs. As for a continuous
time dynamic MPEC, numerical techniques were scarcely visited, except for a single-level reformu-
ation of Friesz et al. (2007), a metaheuristic approach in Yao et al. (2012) and a simultaneous
discretization-based method in Raghunathan (2004).
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In this project, we utilize the quadratic penalty method to solve our dynamic MPEC model.
In specific, we relax the model by dropping the complementarity constraints and attaching to the
objective function a quadratic penalty function for the dropped constraints. Our numerical tests
generate positive results.

3.3 Dynamic User Equilibrium

In this section, we will briefly review the DUE problem which serves as the lower-level component
of our MPEC formulation. The proposed DUE model was formulated as a variational inequality
(Friesz et al. 1993) and a di↵erential variational inequality (Friesz and Mookherjee 2006), then
solved via a fixed-point algorithm in Hilbert space (Friesz et al. 2011).

3.3.1 The DUE formulation

Consider a planning horizon [t0, t
f

] ⇢ <+. The most crucial ingredient of a dynamic user equilibrium
model is the path delay operator, which provides the delay on any path p per unit of flow departing
from the origin of that path; it is denoted by

D
p

(t, h) for all p 2 P

where P is the set of all paths employed by travelers, t denotes departure time, and h is a vector of
departure rates. The path delay operators are obtained from the DNL procedure by summing up
arc delays along the path. From these we construct e↵ective unit path delay operators

 
p

(t, h) = D
p

(t, h) + F [t+D
p

(t, h)� T
A

] for all p 2 P (3.118)

where T
A

is the desired arrival time. Introducing the fixed trip matrix
�

Q
ij

: (i, j) 2 W
�

, where
each Q

ij

2 <+ is the fixed travel demand, expressed as a volume, between origin-destination pair
(i, j) 2 W and W is the set of all origin-destination pairs. Additionally, we will define the set P

ij

to be the subset of paths that connect origin-destination pair (i, j) 2 W.
Denote the set of path flows h = {h

p

: p 2 P}, we stipulate that path flows are square integrable:

h 2
�

L2
+[t0, tf ]

�|P|

We define the set of feasible flows by

⇤0 =

8

<

:

h � 0 :
X

p2P
ij

Z

t

f

t0

h
p

(t) dt = Q
ij

for all (i, j) 2 W

9

=

;

✓
�

L2
+ [t0, t

f

]
�|P|

(3.119)

Let us also define the essential infimum of e↵ective travel delays

v
ij

= essinf [ 
p

(t, h) : p 2 P
ij

] for all (i, j) 2 W

The following definition of dynamic user equilibrium was first articulated by Friesz et al. (1993).

Definition 3.1. (Dynamic user equilibrium). A vector of departure rates (path flows) h⇤ 2 ⇤0

is a dynamic user equilibrium if

h⇤
p

(t) > 0, p 2 P
ij

=)  
p

[t, h⇤ (t)] = v
ij

We denote this equilibrium by DUE ( ,⇤0, [t0, t
f

]).
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Using measure theoretic arguments, Friesz et al. (1993) established that a dynamic user equi-
librium is equivalent to the following variational inequality under suitable regularity conditions:

find h⇤ 2 ⇤0 such that
P

p2P

Z

t

f

t0

 
p

(t, h⇤)(h
p

� h⇤
p

)dt � 0

for all h 2 ⇤0

9

>

>

=

>

>

;

V I( ,⇤0, [t0, t
f

]) (3.120)

It has been noted in Friesz et al. (2011) that (3.120) is equivalent to a di↵erential variational
inequality. This is most easily seen by noting that the flow conservation constraints may be re-stated
as

dy
ij

dt
=
X

p2P
ij

h
p

(t)

y
ij

(t0) = 0
y
ij

(t
f

) = Q
ij

9

>

>

>

=

>

>

>

;

for all (i, j) 2 W

which is recognized as a two-point boundary value problem. As a consequence (3.120) may be
expressed as the following di↵erential variational inequality (DVI):

find h⇤ 2 ⇤ such that
X

p2P

Z

t

f

t0

 
p

(t, h⇤)(h
p

� h⇤
p

)dt � 0

for all h 2 ⇤

9

>

>

>

=

>

>

>

;

DV I( ,⇤, [t0, t
f

]) (3.121)

where

⇤ =

8

<

:

h � 0 :
dy

ij

dt
=
X

p2P
ij

h
p

(t) , y
ij

(t0) = 0, y
ij

(t
f

) = Q
ij

for all (i, j) 2 W

9

=

;

(3.122)

Finally, we are in a position to state a result that permits the solution of the DVI (3.121) to be
obtained by solving a fixed-point problem:

Theorem 3.2. (Fixed point re-statement). Assume that  
p

(·, h) : [t
o

, t
f

] �! <+ is measurable
for all p 2 P, h 2 ⇤. Then the fixed point problem

h = P⇤ [h� ↵ (t, h)] , (3.123)

is equivalent to DV I( ,⇤,�) where P⇤ [·] is the minimum norm projection onto ⇤ and ↵ 2 <+.

Proof. See Friesz (2010).

3.3.2 The DNL subproblem

For the DNL sub-problem of the DUE model, we will employ the LWR-Lax model proposed by
Friesz et al. (2012), which is a simplified version of the LWR model on networks. It is based on
the assumption that any queues induced by congestion do not have physical size, thus no spillback
occurs in the network. The network dynamics, including route and departure time choices, are
summarized by a system of di↵erential algebraic equations (DAEs). The derivation of the DAE
system for DNL involves the variational method for Hamilton-Jacobi equations known as Lax-Hopf
formula (Evans, 2010; Lax, 1957). For the brevity of our discussion, we will directly present the
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DAE system describing and predicting the flow propagation as well as path delay. More detailed
derivation of this DAE system can be found in Friesz et al. (2012).

Given a vehicular network (A, V), where A denotes the set of arcs, and V denotes the set of
nodes, define for each arc e 2 A, the free flow speed ve0 and the jam density ⇢e

jam

. Assume that the
arc dynamic is governed by the following conservation law

@
t

⇢e(t, x) + @
x

f e

�

⇢e(t, x)
�

= 0 (3.124)

where ⇢e(t, x) is the vehicle density on the link e. The fundamental diagram f e(·) is given as follows
(Greenshields)

f e(⇢) = ve0 ⇢

 

1� ⇢

⇢e
jam

!

(3.125)

We start by introducing some notations

A : the set of all arcs

V : the set of all nodes

W : the set of all origin-destination pairs

P : the set of utilized paths

P
ij

: the set of utilized paths that connects origin-destination pair (i, j) 2 W
p = {e1, e2, . . . , e

m(p)} 2 P, e
i

2 A : path represented by the set of arcs it uses

h
p

(t) : departure rate at origin, associated with path p

Qe

p

(t) : entering vehicle count at arc e associated with path p

qe
p

(t) : enter rate at arc e associated with path p

W e

p

(t) : exiting vehicle count at arc e associated with path p

we

p

(t) : exit rate at arc e associated with path p

Le : length of arc e 2 A
 e : the Legendre transformation of the following function

�(u) = inf
�

⇢ 2 [0, ⇢e
jam

] : f e(⇢) = u
 

where f e(·) is the fundamental diagram associated with e 2 A
D(t ;Qe) : delay operator on arc e, associated with boundary profile Qe

Qe(t)
.
=
X

e2p
Qe

p

(t), W e

i(t)
.
=

X

e

i

2p
W e

i

p

(t); i � 2

By convention, we write qe1
p

(t) = h
p

(t), we0
p

(t) = h
p

(t). The following DAE system (3.126)-(3.131)
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for network loading was given in Friesz et al. (2012).

Qe(t)
.
=
X

e2p
Qe

p

(t), qe(t)
.
=
X

e2p
qe
p

(t), we(t)
.
=
X

e2p
we

p

(t) (3.126)

d

dt
Qe

p

(t) = qe
p

(t),
d

dt
W e(t) = we(t) for all p 2 P (3.127)

qei
p

(t) = w
e

i�1
p

(t); i 2 [1, m(p)], p 2 P (3.128)

W e(t) = min
⌧

n

Qe(⌧) + Le e

⇣ t� ⌧

Le

⌘o

; for all e 2 A (3.129)

Qe(t) = W e

�

t+D(t; Qe)
�

; (3.130)

we

i

p

�

t+D(t; Qe

i)
�

=
qei
p

(t)

qei(t)
we

i

�

t+D(t; Qe

i)
�

; i 2 [1, m(p)], p 2 P (3.131)

We note that (3.126) is definitional, i.e. the tra�c on an arc is disaggregated by di↵erent route
choices. (3.128) represents the fundamental recursion, which allows the algorithm to carry forward
to the next arc in the path. (3.129) is the Lax-Hopf formula (Bressan and Han, 2011a,b). (3.130)
is often referred to as the flow propagation constraint, from which the travel time function D(·;Qe)
can be solved. (3.131) describes the diverging model satisfying first-in-first-out.

One shortcoming of the above DNL procedure is the lack of consideration for spillback, which
not only aggravates congestion, but also causes a lot more stop-and-go waves (Colombo and Groli
2003) that will be another source of tra�c emission. Thus as our next e↵ort to model emission on a
network level, we will consider the Lighthill-Whitham-Richards model on a network that captures
spillover.

3.4 The DNL subproblem integrated with emission models

In this section, we will discuss two mesoscopic approaches for modeling tra�c emission on a road
network. The emission model will be considered in connection with the DNL sub-problem, which
is consistent with established path flows as well as the flow propagation constraints. As a result,
the output of the DNL sub-problem will include 1) the e↵ective delay associated with each pair of
departure time and route choices, and 2) the emission associated with each pair of departure time
and route choices, as well as the total emission of the network.

3.4.1 Emission as a functional of velocity and acceleration

Consider a road network (A, V). For each arc a 2 A, let us denote by ⇢
a

(t, x), v
a

(t, x) the density
and velocity of vehicles at time t and location x. The classical Lighthill-Whitham-Richards (LWR)
model (Lighthill and Whitham 1955, Richards 1956) then describes the temporal-spatial evolution
of ⇢

a

(t, x) by
@

@t
⇢
a

(t, x) +
@

@x

⇣

⇢
a

(t, x) v
�

⇢
a

(t, x)
�

⌘

= 0 (3.132)

where the velocity is expressed as an explicit function of density. The map ⇢ 7! ⇢ · v(⇢) is the
fundamental diagram.

Following the modal emission model on a microscopic level (Barth et al. 1996), the rate of
emission e(t) of a moving vehicle can be modeled as a function of instantaneous velocity v(t) and
acceleration a(t):

e(t) = E
�

v(t), a(t)
�

(3.133)
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see Barth et al. (1996) for a detailed description of the function E . The total emission associated
with a particular vehicle is expressed as a functional of velocity and acceleration

total emission =

Z

t

f

t0

E
�

v(t), a(t)
�

dt

Consider an arc a 2 A represented by a spatial interval [0, L
a

] and a solution ⇢
a

(t, x), v
a

(t, x),
(t, x) 2 [t0, t

f

]⇥ [0, L
a

] to the LWR conservation law (3.132). Then the total emission on this arc
is given by

Z

t

f

t0

Z

L

a

0
⇢
a

(t, x) · e(t, x) dx dt (3.134)

=
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Z
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⇢
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(t, x)
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E
✓

v
a

(t, x),
D

Dt
v
a

(t, x)

◆◆

dx dt (3.135)
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(t, x)

✓
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✓

v
a

,
@

@t
v
a

+ v
a

· @
@x

v
a

◆◆

dx dt (3.136)

where D

Dt

.
= @

@t

+ v
a

· @

@x

is the material derivative in Eulerian coordinates corresponding to the
acceleration of the car in Lagrangian ones.

Notice that the formulation (3.136) can only be considered in the distributional sense, since
the solutions ⇢

a

, v
a

to the scalar conservation law are not di↵erentiable. A detailed study of the
continuous-time and discrete-time formulations of macroscopic emission models based on (3.136) is
left as future research.

3.4.2 Emission as a functional of velocity

In this section, we will discuss the travel speed emission models, and integrate them with the DNL
sub-problem in Section 3.3.2. The model is based on the average travel speed for an arbitrary
period of time. Such models ignore certain granularity of the flow dynamics and are calibrated and
validated by empirical data; see Rose et al. (1965), Kent and Mudfor (1979), and CARB (2000) for
more discussion on velocity-based emission models. We assume that the average emission rate ē(t)
is a function of average velocity v̄(t):

ē(t) = E
�

v̄(t)
�

(3.137)

The speed v̄(t) can be averaged over a period that, say, spans a link traversal time. Given any
feasible path flows h 2 ⇤, we can solve the DNL solution in a way proposed by Friesz et al. (2012).
Let D

p

(t, h) denote the total traversal time for path p given that departure from the origin occurs
at time t. In addition, we let ⌧p

a

i

(t) be the time of exit from arc a
i

given that departure from the
origin occurs at time t and path p is followed, where p = {a1, . . . , a

m(p)}. Then the average speed
on the link a

i

when the departure time from the origin occurs at t, denoted by v̄
a

i

(t, h) is given by

v̄
a

i

(t, h) =
L
a

i

⌧p
a

i

(t)� ⌧p
a

i�1(t)
, t 2 [t0, t

f

], p 2 P

where L
a

i

is the length of arc a
i

2 p. Then using equality (3.137), the contribution to emission of
users departing at time t along path p is given by

E
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(3.138)
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Notice that we express the emission in a way similar to the e↵ective delay operator  
p

(t, h); such
formulation will facilitate the derivation of gradient of the objective function in Section 3.6.

The total emission of the network associated with the path flow vector h is easily calculated as

total emission =
X

p2P

Z

t

f

t0

h
p

(t) · E
p

(t, h) dt (3.139)

Remark 3.3. In Rose et al. (1965), Kent and Mudford (1979), and CARB (2000), it was the
emission per unit distance e

x

that was measured against travel speed, instead of emission per unit
time e

t

, see (3.115), (3.116), and (3.117). However, the emission per unit time as in (3.137) can
be easily calculated as

Ē
�

v̄(t)
�

= ē(t) =
@

@t
e(t, x) =

@x

@t

@

@x
e(t, x) = v̄(t) · e

x

(3.140)

where e
x

is given by any one of (3.115), (3.116), or (3.117).

3.5 Multiobjective Toll Pricing

Most of the current MPEC-based Dynamic Tra�c Assignment problems deal with a single objective.
Lawphongpanich and Hearn (2004) studied the e�cient tolls in a static network. Friesz et al. (2007)
extended their work to consider dynamic congestion tolls, and Yao et al. (2012) further studied
a dynamic congestion pricing problem with demand uncertainty. In these studies, it was assumed
that the Stackelberg leader seeks to minimize just the network congestion. However, the problem
of congestion pricing with an emission-related objective is more subtle. The di�culty arises from
the paradox that the most environment-friendly driving condition turns out to be very ine�cient in
terms of travel time (CARB 2000). Therefore, one major challenge we must overcome in solving the
proposed model is to resolve the potential conflict between transportation e�ciency and emission.
Therefore, we proceed to formulate our dynamic congestion pricing problem as a multiobjective
program:

min
Y

U :=

2

4

Z

t

f

t0

X

p2P
 

p

(t, h⇤)h⇤
p

(t)dt,

Z

t

f

t0

X

p2P
E

p

(t, h⇤)h⇤
p

(t)dt

3

5 (3.141)

subject to
X

p2P

Z

t

f

t0

( 
p

(t, h⇤) + �
a,p

Y
a

)(h⇤
p

� h
p

)  0 (3.142)

h 2 ⇤ (3.143)

⇤ :=

8

<

:

h � 0 :
dy

ij

dt
=
X

p2P
ij

h
p

(t) , y
ij

(t0) = 0, y
ij

(t
f

) = Q
ij

for all (i, j) 2 W

9

=

;

(3.144)

0  Y
a

 Y
UB

for all a 2 A (3.145)

where Y := (Y
a

: a 2 A), the first term appearing on the right-hand side of (3.141) is the total
e↵ective delay, the second term is the total emission as given in (3.139), and where

�
a,p

=

(

1 if path p traverse arc a

0 otherwise

42



and Y
UB

2 <+ denotes the prescribed upper bound to the toll. Constraint (3.142) is a straight-
forward extension of the VI formulation of DUE, which takes into account the toll prices Y

a

. One
crucial term in the formulation is the e↵ective delay operator  (·, ·) : ⇤ ! (L[t0, t

f

])|P|
+ . The

evaluation of such operator is referred to as the DNL procedure and is realized by solving the DAE
system in Section 3.3.2. Therefore, the above program is further constrained by (3.126)-(3.131), and
(3.138)-(3.139). Notice that in the program above, U is a vector of objective functions.

Definition 3.4. (Pareto Optimal) For a multiobjective optimization problem of the form:

minF (x) = [F1(x), F2(x), ..., F
k

(x)]T

subject to
x 2 X

a feasible solution x⇤ 2 X, where X denotes the feasible region, is Pareto optimal if and only if there
does not exist another solution, x 2 X, such that F (x)  F (x⇤), and F

i

(x) < F
i

(x⇤) for at least one
function.

A Pareto optimum requires that there are no other feasible solutions that improve at least one
objective without deteriorating another. Seeking to attain a Pareto optimum, we employ a common
approach called weighted sum method. Successful examples of such an approach can be found in
Zadeh (1963) and Murata et al. (1996). Some new insights into the weighted sum scalarization can
be found in Marler and Arora (2010).

3.6 Solution Methodology

The DVI can be reformulated as complementarity constraints as follows:

( 
p

(t, h⇤) + �
a,p

Y
a

� µ
ij

)?h⇤
p

for all p 2 P
ij

, ij 2 W (3.146)

 
p

(t, h⇤) + �
a,p

Y
a

� µ
ij

� 0 for all p 2 P
ij

, ij 2 W (3.147)

h⇤
p

� 0 for all p 2 P (3.148)

where h⇤ 2 ⇤. With complementarity constraints substituting the DVI in the MPEC model, we are
able to obtain a single-level mathematical program consisting of the objective function (3.141) and
(3.126)-(3.131), and (3.138)-(3.139). Since the complementarity constraints may not satisfy MFCQ
(Rodrigues and Monteiro, 2006; and Izmailov and Solodov, 2004), we propose to apply a penalty
method to handle these constraints. In Monteiro and Meira (2011) the quadratic penalty approach,
sometimes called the sequential penalty technique, was tested numerically with positive results
in solving an MPCC. Following the quadratic penalty method, we penalize the complementarity
constraints and obtain an augmented objective function as:

U := [U1(h
⇤,Y, µ,M), U2(h

⇤,Y, µ,M)] (3.149)

where

U1(h
⇤,Y, µ,M) :=

X

ij2W

X

p2P
ij

Z

t

f

t0

 
p

(t, h⇤)h⇤
p

dt+Q(h⇤,Y, µ,M) (3.150)

U2(h
⇤,Y, µ,M) :=

X

ij2W

X

p2P
ij

Z

t

f

t0

E
p

(t, h⇤)h⇤
p

dt+Q(h⇤,Y, µ,M) (3.151)
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Q(h⇤,Y, µ,M) := M
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ij2W
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ij

� 
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a,p

Y
a

, 0}]2 dt (3.152)

where µ := (µ
ij

: ij 2 W), and M is a properly large number. In order to compute the above
multiobjective problem, we use a simple but commonly-used weighted sum scalarization method:

S
u

(h,Y, µ,M) = ↵U1(h
⇤,Y, µ,M) + �U2(h

⇤,Y, µ,M) (3.153)

where ↵,� 2 <+ are weights for two objectives, respectively. For normalization, we further require
that ↵+� = 1. Then, the problem becomes a single-level single-objective problem. Such a problem
is computed with the gradient projection method by Friesz (2010).

3.7 Numerical study

In this section, we will numerically illustrate the solutions to the MPEC problems as well as the
e↵ectiveness of the dynamic toll in mitigating both congestion and emission. Consider the network
shown in Figure 9, which consists of six arcs and five nodes. There are two origin-destination pairs
(1, 3), (2, 3), among which four and two paths are utilized, respectively.

p1 = {3, 6}, p2 = {1, 2, 6}, p3 = {1, 2, 4, 5}, p4 = {3, 4, 5}, p5 = {6}, p6 = {4, 5}

Assume that arc 1 is tolled, and the upper-level decision variable of the MPEC problem is the
dynamic toll price imposed on arc 1. The lower level is a DUE problem where drivers choose their
departure time and route in order to minimize the total travel cost, including a toll price.

1 2 3

21

4

6

5

4

3

5

Figure 9: The 6 arc 5 node network

3.7.1 Numerical setting

We fix a morning commute horizon spanning five hours from 6:00 am to 11:00 am. The arc param-
eters are shown in Table 1.

We will employ the emission model discussed in Section 3.4.2 and Remark 3.3:

Ē
�

v̄(t)) = v̄(t) · e
x

where the hot running emission e
x

is given by (3.117):

e
x

= BER⇥ exp
�

b1(v � 17.03) + b2(v � 17.03)2
 

(3.154)

where BER = 2.5, b1 = �0.04, b2 = 0.001 (Smit 2006). We consider two cases in our computation:
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Arc Jam density Free flow speed Length
(vehicle/mile) (mile/hour) (mile)

1 400 35 10
2 400 35 10
3 400 35 10
4 400 35 20
5 400 35 20
6 400 35 15

Table 6: Arc parameters for the network

I. The demand matrix is (Q1,3, Q2,3) = (820, 410), and The upper bound for toll price is Y
UB

=
10.

II. The demand matrix is (Q1,3, Q2,3) = (1400, 700), and The upper bound for toll price is Y
UB

=
10.

3.7.2 Numerical results

The solution algorithm for MPCC is implemented in Matlab (2010a), which runs on the Intel Xeon
3160 Dual-Core 3.0 GHz processor provided by the Penn State High Performance Computing Center.

Case I
We display the first numerical result from Case I above in Figures 12, 10, 11 and 13. For

comparison reasons, we first solve the DUE problem without any tolls. The departure profiles at
the beginning of each path are shown in Figure 10. Then the optimal solution to the MPEC problem
which is a dynamic toll on arc 1, is presented in Figure 12. Under such toll price, the new equilibrium
solution is now displayed in Figure 11. Notice that the two paths p2, p3 use link 1, and thus are
a↵ected by the toll. In the MPEC solution with toll, the path flows on p2, p3 diminish to the point
where path p3 is not used and very little tra�c uses path p2. Figure 13 shows the di↵erence between
the equilibrium path flows without toll, and the equilibrium path flows with optimal toll. It is clear
that most of the users on path p2, p3 switch to path p1, p4, due to the presence of the toll.

We also compare the two objective functions in the case of DUE with toll and DUE without toll.
The results are summarized in Table 2. It is clear that by adding the toll, we are able to reduce the
total travel cost and total emission by 2.9% and 10.4%, respectively.

Total travel cost Total emission

DUE without toll 3.4744E+04 3.1789E+06
DUE with toll 3.3723E+04 2.8483E+06

Table 7: Comparison between DUE solutions. Case I.

Case II
In the Case II, the demand for each O-D pair is increased. The same quantities of the solution as

in Case I are shown in Figures 14, 15, 16 and 17. Unlike the first case, in Case II there is very little
di↵erence of the DUE solutions with and without tolls. We interpret such results with the following
intuition: when the demand increases, the system becomes less sensitive to control parameters,
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Figure 10: Case I. DUE solution without any toll
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Figure 11: Case I. DUE solution with optimal
toll.
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Figure 12: Case I. Optimal toll on arc 1.
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Figure 13: Case I. Di↵erences of path flows be-
tween DUE without toll and DUE with toll.

making the system less controllable. This is also reflected from the comparison of objectives, as
shown in Table 3. The reduction of total travel cost and total emission is only 0.04% and 0.45%.

Total travel cost Total emission

DUE without toll 7.5962E+04 5.4119E+06
DUE with toll 7.5932E+04 5.3878E+06

Table 8: Comparison between DUE solutions. Case II.

3.7.3 Di↵erent weights, the Braess’s paradox

The multi-objective program is solved using the weighted sum scalarization method. We use di↵erent
weights for total travel cost and total emission and see how the solution is a↵ected. The test is
conducted for Case I and Case II, the results are summarized in Table 4 and Table 5, respectively.
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Figure 14: Case II. DUE solution without any
toll.
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Figure 15: Case II. DUE solution with optimal
toll.
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Figure 16: Case II. Optimal toll on arc 1.
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Figure 17: Case II. Di↵erences of path flows be-
tween DUE without toll and DUE with toll.

We indicate by ↵ the weight for the total travel time, by � the weight for the emission.

Total travel cost Total emission ↵ �

Weight i, 3.3723E+04 2.8482E+06 0.0988 0.9011
Weight ii, 3.3723E+04 2.8483E+06 0.9434 0.0566

Table 9: Comparison of objectives for di↵erent choices of weights, Case I. ↵ is the weight of total travel cost,
� is the weight of total emission.

Another interesting phenomenon is the Braess-like paradox displayed in Case I, where the per-
formance of the network, whether in terms of travel cost or emission, is enhanced in the more
constrained system (the one with toll).
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Total travel cost Total emission ↵ �

Weight i, 7.5932E+04 5.3878E+06 0.0138 0.9862
Weight ii, 7.8360E+04 5.2396E+06 0 1
Weight iii, 7.5858E+04 5.4175E+06 1 0

Table 10: Comparison of objectives for di↵erent choices of weights, Case II. ↵ is the weight of total travel
cost, � is the weight of total emission.

3.7.4 Discussions

In the numerical tests, we solved two cases of a simple network. The results provide some interesting
phenomena and interpretations to our proposed model and the dynamic toll pricing problem in
general.

First, as noted above, the optimal toll creates a Braess-like paradox in Case I. A Braess’ paradox
(Braess 1969) states that the system’s overall performance can be reduced in some cases with added
extra capacity when tra�c agents selfishly decide their route. In our problem setting, the tra�c
agents all choose both their route and departure time that appear most favorable to themselves. By
imposing the toll, a↵ordable time windows on path p2 and path p3 become significantly smaller. In
particular, we notice that in the presence of the toll, the path p3 is completely abandoned by the
users. With fewer a↵ordable choices on path and/or departure time, the system’s capacity becomes
more constrained, yet two measures of the system performance, the total tra�c cost and the overall
emission amount, are reduced, i.e. a higher e�ciency is attained in terms of both transportation
and environment.

Second, tolls can act as e↵ective stimuli in a transportation system. We observe from Table 2
(in Case I) and Table 3 (in Case II) that by properly choosing the toll prices, one can reduce both
the total tra�c cost and total emission. In Case I, the price of toll on the first arc of path p2 renders
this path no longer an a↵ordable choice, i.e. the equilibrium flow on this path vanishes, which,
nonetheless, creates a Braess-like paradox as discussed above.

Finally, by comparing Table 4 and Table 5, in response to changing weights for the two objectives
in our weighted sum approach, Case I (in Table 4) shows very minor changes in objective values
compared to Case II (in Table 5). The reason for such a di↵erence in the sensitivity to weight
perturbations is still a point of research curiosity. Nonetheless, this points to the necessity of a careful
determination of weights for the two objectives in our model in order to attain the optimization goal
of the central control.

3.8 Conclusion

This project proposes a congestion pricing problem that takes into account the environmental im-
pact of tra�c dynamics on a vehicular network. An MPEC problem is formulated which aims at
mitigating both emission and congestion on a network level. For the vehicle-induced emissions, we
employ a mesoscopic modeling approach, which uses macroscopic tra�c quantities and microscopic
emission functions. The emission model is then embedded in the dynamic network loading sub-
problem of DUE in the following way: for every given set of departure rates at the origin, we run
the network loading procedure until all macroscopic tra�c quantities are available; then we provide
vehicle dynamics information to the microscopic emission function and perform emission estimation
on a network-wide level. The MPEC problem is first reformulated as an MPCC. To avoid violation
of constraint qualifications, we then apply a quadratic penalty-based method to relax the original
program. The relaxed model is solved with the gradient projection algorithm (Friesz 2010) with mul-
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tiobjective handled via a weighted sum scalarization. The numerical examples have demonstrated
the e↵ectiveness of congestion toll in controlling and reducing both total travel cost and emission.
We also observe an instance of the Braess-like paradox where a more constrained system results in
higher transportation e�ciency and less environmental impact.

The emission model employs the average velocity-based emission function (CARB 2000). Such
a model is computationally convenient in terms of integration with the DNL procedure. However,
it relies on the average speed of cars, and therefore is less accurate compared to other models that
depend on instantaneous speed and acceleration. As our future research, we will take into account
spill-over into our DNL model and capture the speed variation in a more accurate way.

Kumar and Vladimirsky (2010) pointed out that a weighted sum scalarization approach could
obtain only the convex part of the Pareto front, which might lead to selecting suboptimal trajectories.
To resolve such an issue, they provided an alternative “marching” method. The application of their
approach to our model is also of our future research interest.

4 Outcomes of the Project

As the outcomes of the project, several projects have been accepted and disseminated in journals and
selective transportation research conferences, including International Symposium on Transportation
and Tra�c Theory (ISTTT) and Triennial Symposium on Transportation Analysis (TRISTAN).
Specifically, the detailed information on these projects are given as follows:

• Friesz, T.L., Han, K., Liu, H., Yao, T., 2013. Dynamic congestion and tolls with mobile source
emission. In Proceedings of the 20th International Symposium on Transportation and Tra�c
Theory (ISTTT 2013). The Netherlands, 17-19 July 2013.

• Friesz, T.L., Han, K., Liu, H., Yao, T., 2013. Dynamic congestion and tolls with mobile source
emission. Procedia - Social and Behavioral Sciences, 80, 818-836.

• Han, K., Friesz, T.L., Liu, H., Yao, T., 2012. A robust optimization approach for dynamic
tra�c signal control with emission constraints. Project accepted for presentation at the Eighth
Triennial Symposium on Transportation Analysis (TRISTAN VIII).

In addition, some conference presentations to disseminate the findings of the project are listed
as following:

• Han, K., Friesz, T.L., Liu, H., Yao, T., 2013. A Robust Optimization Approach for Adaptive
Tra�c Signal Control with Emission Constraints. INFORMS Annual Meeting 2013.

• Han, K., Sun, Y. Liu, H., Friesz, T.L., Yao, T., 2013. A bi-level model of dynamic tra�c
signal control with continuum approximation. INFORMS Annual Meeting 2013.

5 Impact of the Project

This project provides a spectrum of new models and substantially extends the current literature in
addressing tra�c control and congestion/emission mitigation with potential incorporation of realistic
data.

The research findings, made public in the forms of publications and conference presentations, can
potentially impact multiple disciplines including civil engineering, operations management, opera-
tions research, optimization, and transportation. In practice, the proposed formulations and solution
schemes can aid tra�c network designers / managers in making non-trivial planning decisions.

49



References

Anitescu, M. (2000). On solving mathematical programs with complementarity constraints as non-
linear programs. Preprint ANL/MCS-P864-1200, MCS Division, Argonne National Laboratory,
Argonne, IL.

Arnott, A., de Palma, A., & Lindsey, R. (1990). Departure time and route choice for the morning
commute. Transportation Research Part B, 24(3), 209-228.

Arnott, R., & Kraus, M. (1998). When are anonymous congestion charges consistent with marginal
cost pricing? Journal of Public Economics, 67(1), 45-64.

Arnott, R., & Small, K. (1994). The economics of tra�c congestion. American Scientist, 82(5),
446-455.

Atamtürk, A., Zhang, M., 2007. Two-stage robust network flow and design under demand uncer-
tainty. Operations Research 55 (4), 662-673.

Aubin, J.P., Bayen, A.M., Saint-Pierre, P., 2008. Dirichlet problems for some Hamilton-Jacobi
equations with inequality constraints. SIAM Journal on Control and Optimization 47 (5), 2348-
2380.

Aziz, H.M.A. and Ukkusuri, S.V. 2012. Integration fo environmental objectives in a system optimal
dynamic tra�c assignment model. Computer-Aided Civil and Infrastructure Engineering 27, 494-
511.

Ban, J.X., Liu, H.X., Ferris, M.C., & Ran, B. (2006). A general MPCC model and its solution
algorithm for continuous network design problem. Mathematical and Computer Modeling, 43,
493-505.

Barth, M., An, F., Norbeck, J., Ross, M. (1996). Modal emission modeling: A physical approach.
Transportation Research Record, 1520, 81-88.
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