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1. Introduction 

This research focuses on the development of transportation optimization models under uncertainty.  
Yao et al. (2009) develop a robust evacuation transportation planning model for freeway traffic systems in 
which demand is uncertain.  The study results provide preliminary evidence that routing traffic using such 
a robust, optimization-based model can improve the average objective performance.  In Section 2 the 
authors describe the work of Ben-Tal et al. (2011), which extends the robust optimization approach for 
dynamic traffic flow problems by allowing dynamic adjustments as data uncertainty is realized.  The 
study also demonstrates that the method is computationally tractable using an example evacuation 
network of Cape May, New Jersey.  Insights are presented with regard to the potential for using robust 
optimization for humanitarian relief supply chains specifically and transportation modeling in general.   
Section 3 discusses the work of Chung et al. (2011), in which a new model for robust dynamic network 
design was developed to reduce network traffic congestion through capacity expansion policies.  The 
study is the first to apply robust optimization methodology to a network design problem with dynamic 
flows and uncertain demand. 

 
2. Robust Optimization for Emergency Logistics Planning: Risk Mitigation in 
Humanitarian Relief Supply Chains 

2.1 Introduction 

Over the past three decades, the number of reported disasters has risen threefold. Roughly 5 billion 
people have been affected by disasters with estimated damages of about $1.28 trillion (Guha-Sapir et al. 
2004). Although most of these disasters could not have been avoided, significant improvements in death 
counts and reported property losses could have been made by efficient distribution of supplies. The 
supplies here could mean personnel, medicine, and food, which are critical in emergency situations. The 
supply chains involved in providing emergency services in the wake of a disaster are referred to as 
humanitarian relief supply chains. Humanitarian relief supply chains are formed within a short time 
period after a disaster, with the government and the NGOs being the major drivers of the supply chain. 
Clearly, emergency logistics is an important component of humanitarian relief supply chains. 

Most literature in emergency logistics focuses on generating transportation plans for rapid 
dissemination of medical supplies inbound to the disaster-hit region (Sheu 2007, Ozdamar et al. 2004, 
Lodree Jr. and Taskin 2008). There is, however, another aspect of emergency logistics which is often 
ignored - outbound logistics. The outbound logistics considers a situation where people and emergency 
supplies (e.g., medical facilities and services for special need evacuees) need to be sent from a particular 
location affected by disaster within a given time horizon. 

In the outbound emergency logistics, the demand of traffic flows is usually highly uncertain and 
depends on a number of factors, including the nature of the disaster (natural/man-made) and time of 
impact. This uncertainty in the demand causes disruptions in emergency logistics and hence disruptions in 
humanitarian relief supply chains, leading to severe sub-optimality or even infeasibility, which may 
ultimately lead to loss of life and property. In order to mitigate the risk of uncertain demand, we study the 
problem of generating evacuation transportation plans that are robust to uncertainty in outgoing demand. 
More specifically, we solve a dynamic (multi-period) emergency response and evacuation traffic 
assignment problem with uncertain demand at source nodes. 

Researchers and practitioners in the field of transportation are concerned with multi-period 
management problems with an inherent time-dependent information uncertainty. Traditional dynamic 
optimization approaches for dealing with uncertainty (e.g., stochastic and dynamic programming) usually 
require the probability distribution for the underlying uncertain data to obtain expected objectives. 
However, in many cases, it may be very difficult to accurately identify the distribution required to solve a 
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problem. Especially, this is more likely true when one is considering an evacuation transportation 
problem due to the inherent complexity and uncertainty. In addition, the robust solution guaranteeing the 
feasible evacuation plan is important, since infeasible solutions may cause potential loss of life and 
property in extreme events. 

The authors explore the potential of robust optimization (RO) as a general computational approach to 
managing uncertainty, feasibility, and tractability for complex transportation problems. The RO approach 
was originally developed to deal with static problems formulated as linear programming (LP) or conic-
quadratic problems (CQP), using crude uncertainty with hard constraints. It means that uncertainty is 
assumed to reside in an appropriate set, and RO guarantees the feasibility of the solution within the 
prescribed uncertainty set by adopting a min-max approach. The RO technique has been successfully 
applied in some complex and large-scale engineering design and optimization problems, similar to robust 
control in control theory (Ben Tal and Nemirovski 1999, 2002). 

The original RO approach considers static problems. The underlying assumption of RO is ``here and 
now'' decisions, and all decision variables need to be determined before any uncertain data are realized. 
This is not typical in many transportation management problems that have a multi-period nature. In multi-
period transportation problems such as dynamic traffic assignment, “wait and see” decisions are made, 
which means some decision variables are “adjustable” and affected by part of the realized data. 
Recognizing the need to account for such dynamics, Ben Tal et al. (2004) extended the RO approach and 
developed an Affinely Adjustable Robust Counterpart (AARC) approach to consider “wait and see” 
decisions. 

To demonstrate the use of AARC in emergency transportation management settings, in this research 
project we consider a system optimum dynamic traffic assignment (SO-DTA) problem. The main 
contributions are summarized as follows.   

    • We develop a robust optimization framework for system optimum dynamic traffic assignment 
problems. The framework incorporates a linear programming (LP) formulation based on the Cell 
Transmission Model (CTM) (Daganzo 1993, 1995, Ziliaskopoulos 2000) and the AARC approach by 
considering dynamical adjustments to realizations of uncertainty with appropriate uncertainty sets. The 
framework is converted to LP and hence is computationally tractable. 

    • This research applies the proposed robust optimization framework to an emergency response and 
logistics planning problem. Numerical examples are provided to illustrate the value of the robust 
optimization in the context of emergency logistics and demonstrate the computational viability of the 
developed framework. Simulation experiments show that the AARC solution provides excellent results 
when compared with the solutions of deterministic LP and Monte Carlo sampling-based stochastic 
programming. 

    • This research work obtains some general insights that may have wider applicability for 
transportation managers: (1) A robust solution may improve both feasibility and performance when 
infeasibility costs are significant. Intuitively, the usual nominal optimal solution may be not far from the 
robust solution, but the usual optimal solution can perform much worse in the worst case. (2) An 
integration of RO and transportation modeling will improve the generation, communication, and potential 
use of uncertainty data in logistics transportation management. The intuition for this insight is twofold. 
First, in many applications in transportation, the set-based uncertainty (used by RO) is the most 
appropriate notion of data uncertainty. Second, computational tractability (resulting from this set-based 
uncertainty and dynamic traffic flow modeling in LP formulations) leads to efficient solutions for 
logistics transportation management under uncertainty. 

 

2.2 Literature Review 

The DTA problem describes a traffic system with time-varying flow and has been studied substantially 
since the seminar work of Merchant and Nemhauser (1978a,b). The main research can be classified into 
four categories: mathematical programming, optimal control, variational inequality, and simulation-based 
approach (see Peeta and Ziliaskopoulos (2001), Friesz and Bernstein (2000) for a review). 
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Daganzo (1993, 1995) proposed the CTM model, consisting of a set of linear difference equations, to 
develop a theoretical framework to simulate network traffic. It was assumed that the best route from 
origin to destination is already known to the travellers. Ziliaskopoulos (2000) relaxed this assumption by 
formulating a single destination SO DTA problem as a linear program with the decision variables being 
the route choices. Recently, the deterministic CTM-based DTA model has been applied to evacuation 
management (e.g., Tuydes (2005), Chiu et al. (2007), Xie et al. (2010)). For example, Chiu et al. (2007) 
proposed a network transformation and demand modeling technique for solving an evacuation traffic 
assignment planning problem using the CTM-based single destination SO DTA model. 

Recognizing that deterministic demand or network characteristics are unrealistic in some settings, 
another wave of research on DTA is the modeling of stochastic properties and the development of robust 
solutions. Waller et al. (2001) and Waller and Ziliaskopoulos (2006) addressed the impact of demand 
uncertainty and the importance of robust solution. Peeta and Zhou (1999) used Monte Carlo simulation to 
compute a robust initial solution for a real-time online traffic management system. Chance constraint 
programming for the SO DTA problem was analyzed by Waller and Ziliaskopoulos (2006). Yazici and 
Ozbay (2007) introduced probabilistic capacity constraint and solved the CTM-based SO DTA problem 
for a hurricane evacuation problem. Karoonsoontawong and Waller (2007) proposed a DTA-based 
network design problem formulated as a two-stage stochastic program and a scenario-based robust 
optimization (Mulvey et al. 1995). Ukkusuri and Waller (2008) proposed a two-stage stochastic program 
with recourse model to account for demand uncertainty. 

Recently, robust optimization has witnessed a significant growth (Ben-Tal and Nemirovski 1998, 1999, 
2000, El Ghaoui et al. 1997, 2003, Bertsimas and Sim 2003, 2004). For a summary of the state of art in 
RO, please refer to Ben-Tal et al. (2009), Bertsimas et al. (2011) and references therein. RO has been 
proposed for application in network and transportation systems (Bertsimas and Perakis (2005), Ordonez 
and Zhao (2007), Atamturk and Zhang (2007), Mudchanatongsuk et al. (2008), Erera et al. (2009), Yin et 
al. (2008, 2009) to name a few). Related to our work, Atamturk and Zhang (2007) proposed a robust 
optimization approach for two-stage network flow and design. Erera et al. (2009) developed a two-stage 
robust optimization approach for repositioning empty transportation resources. Both of the studies are in 
the spirit of Ben-Tal et al. (2004), where the second-stage variables are determined as recourse or 
recovery actions while maintaining feasibility after the uncertain data are realized. 

 

2.3 CTM for the DTA Problem 

In this section, we summarize and reformulate the prior work on the deterministic linear program 
(DLP) based on the traditional CTM model (Ziliaskopoulos 2000). The CTM, named by Daganzo (1993, 
1995), models freeway traffic flow using simple difference equations. It approximates the kinematic wave 
model under the assumption of a piecewise linear relationship between flow and density on the link. More 
formally, the following equation shows the relationship between traffic flow, q, and density on a link, k, 
in a traffic network. 

 
( )( ),,,min= maxmax kkwqvkq −  

 
where v is free flow velocity, maxk  is maximum possible density, w is backward wave speed and 

maxq is maximum allowable flow on the link. 
The LP-based CTM model of Ziliaskopoulos (2000) is a simplification of the original CTM model. In 

the CTM model, a segment of a freeway is decomposed into cells based on the free flow velocity and 
length of discrete time step. By this division, vehicles can move only to adjacent cells in unit time. The 
connectors between cells are dummy arcs indicating the direction of flow between cells. The demand of 
the CTM model represents the vehicular trips for each OD pair. In other words, each demand has its own 
origin and destination node in the network. The demand for each OD pair is assumed to be known at the 
beginning and used as input data of the CTM model. However, in our model, demand at the source node 
is uncertain. We provide the reformulation of the deterministic LP-based CTM model. The model 



4 
 

includes the characteristics of time-space dependent cost and an adjacent matrix. In the traditional CTM 
research, it is assumed that the coefficient of cost is a constant value within the time-space network. 
However, in this report, the coefficient is assumed to be dependent on time horizon and demand nodes. It 
is a more common situation and is necessary to study emergency logistics management. An adjacency 
matrix A = [ ija ] is defined for representing the connectivity of the cells. The value of ija  is equal to 1 if 
cell i is connected to cell j, otherwise ija =0. 

 
Table 1: CTM notations   

  Symbol  Description 

 ℑ :   set of time intervals, { }T1,..,  
C :   set of cells, { }I1,..,   

SC :  
 set of sink cells  

RC :   set of source cells  

A :   adjacency matrix representing transportation network connectivity.  
t
ic :  

 time-space dependent cost in cell i  at time t   

t
ix :  

 number of vehicle contained in cell i  at time t   

t
ijy :  

 number of vehicle flowing from cell i  to cell j  at time t   

t
id :  

 demand generated in cell i  at time t  

t
iN :  

 capacity of cell i  at time t  

t
iQ :  

 inflow/outflow capacity of cell i  at time t  

t
iδ :  

 traffic flow parameter for cell i  at time t  

ix̂ :  
 initial occupancy of cell i  

 
Based on the notations in Table 1, we present the deterministic linear programming (DLP) model: 

 

  )(min
\,
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tCiQya t
i

t
ijij

Cj
,,   (5) 

  ℑ∈∈∀≤−∑
∈

tCixya t
i

t
ijij

Cj
,0,   (6) 

  Cixx ii ∈∀,ˆ=0   (7) 

  CCjiyij ×∈∀ ),(0,=0   (8) 

  ℑ∈∀∈∀≥ tCixt
i ,0,   (9) 

  ℑ∈∀×∈∀≥ tCCjiyt
ij ,),(0,   (10) 

The cost parameter t
ic  depends on time in order to give a penalty when any people cannot arrive at the 

destination at the end of time horizon T. i.e. 
 

 
⎩
⎨
⎧

∈
≠∈

,=,\
,\1

=
TtCCiM
TtCCi

c
s

st
i   

where M is assumed to be a positive large number to represent the unsatisfied demand cost. By using the 
time-dependent cost parameter, the objective function measures the total cost incurred, which consists of 
travel cost and penalty cost. The objective function of the LP-based CTM model (M-DLP) provides an 
optimistic estimate or lower bound of total cost as it simplifies the original CTM model by Daganzo 
(1993, 1995) and allows vehicle holding.  

The dynamics of the system are that the change of traffic level is determined by traffic flow and 
demand at each node and in each time period. By letting demand be 0 everywhere except source cells, the 
formulation can be generalized by Equation 2. The total inflow into a cell is bounded by not only the 
inflow capacity (Equation 3) but also by the remaining capacity of the cell (Equation 4). Similarly, total 
output flow from a cell is limited by the outflow capacity (Equation 5) and the current occupancy of the 
cell (Equation 6). It is assumed that the capacities of source and sink cells are infinite. The initial 
conditions and non-negativity conditions are considered as the remaining constraints. Note that Equation 
9 is a redundant constraint, since 0≤−∑ ∈

t
i

t
ijijCj

xya , 0≥t
ijy and  0≥ija . It is evident that  

t
i

t
ijijCj

xya ≤≤∑ ∈
0 and Equation 9 can be eliminated. 
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2.4 Robust Optimization Formulation of CTM 

The CTM-based SO DTA problem is a generic multi-period linear programming problem. In this 
section, we apply AARC methodology to deal with the uncertainty in demand and find a robust solution 
for the multi-period emergency logistics problem. 

In RO approach, it is assumed that demand 
t
id  is unknown and it belongs to a prescribed uncertainty 

set. In particular, a box uncertainty set is generally used.  
 )],(1~),(1~[=],[ θθ +−≡∈ t

i
t

i
t

i
t
i

b
d

t
i ddddUd  

 where θ  is uncertainty level and t
id~  is nominal demand in cell i during time interval t. 

In order to find a less conservative solution, we consider a joint constraint where the demands are 
upper bounded. Let's consider Ri

t
iTt

CiDd ∈∀≤∑ ∈
, , which refers to a joint budget for demand 

uncertainty. This represents the situation that the total demand ( t
iTt

d∑∈
) from a source node is limited by 

an upper bound ( iD ). The box uncertainty set in conjunction with the budget uncertainty set becomes a 
polyhedral uncertainty set, which can be a more realistic assumption in emergency logistics management. 
Now we have the following uncertain data set.  

 
⎭
⎬
⎫
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⎨
⎧

≤≤≤≡∈ ∑
∈

i
t
i
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i
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Next, a specific form of linear decision rules is assumed to convert M-DLP to AARC formulation. The 
linear rules are used to derive a computationally tractable problem by approximating the robust solution. 
We note that the solution from AARC is optimal in worst case from the predetermined uncertainty set. 
However, there is no guarantee that the robust solution is close to optimal in the other cases, since the 
relationship between uncertain parameters and decision variables may not be linear. Specifically, the 
adjustable control variables, t

ijy , can be represented as an affine function of previously observed demand 

values, i.e., ττ
τ
ππ s

s
ijt

tIRCsijt
t
ij dy ∑∑ ∈∈

− +1= , where 1−
ijtπ  and τπ s

ijt are non-adjustable variables and 

{ }10,..,= −tIt . 
Along with the affine rule of control variables, the state variables also become an affine function of the 

previously realized data, ,= 1 ττ
τ
ηη s

s
it

tIRCsit
t
i dx ∑∑ ∈∈

− +  by the linear structure of the CTM model. 

By substituting the state and control variables, we have the following AARC formulation.  
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 The formulation (M-AARC) is intractable since it is a semi-infinite program, and it can be 
reformulated as a tractable optimization problem as shown in the Theorem 1 (See Ben-Tal et al. 2011 for 
extensive results). The minimum objective value z, denoted as *

AARCz , is a guaranteed upper bound value 
for all realization of uncertain data under the assumption of linear dependency. The objective value, 

*
AARCz , also can be interpreted as the optimistic estimate of total travel cost in the worst case, which can 

be lower than the optimistic estimate from robust counterpart(RC), *
RCz  as AARC has a larger robust 

feasible region (Ben-Tal et al. 2004).  The decision variables of AARC are not adjustable control and 
state variables, but a set of coefficient of affine functions of the control variables.  This means that the 
solution of AARC is the linear decision rule. 

 

2.5 Emergency Logistics Management 

Emergency management is one of the best application areas for applying robust optimization due to the 
uncertainty of human beings and disaster. Robust solution, especially the AARC solution, can play an 
important role for emergency logistics planning for several reasons. First of all, the role of hard constraint 
is emphasized since the penalty cost for an infeasible solution is loss of life or property. Next, it is very 
difficult to estimate or forecast the demand model in the to-be-affected areas due to unexpected human 
behavior and the nature of disaster. Finally, we can take advantage of updated or realized data on demand 
by employing the AARC solution. When we solve M-AARC1, the optimal coefficients of the Linear 
Decision Rule (LDR) are computed offline. Going online, the actual decision variables (flows) are 
determined for period t by inserting the revealed uncertainties from previous periods in the LDR. A fully 
online version of the method can be also implemented. In such a version, at period t only the t-period 
design variables are activated. The horizon is then rolled forward and the problem is resolved after 
adjusting the stated variables revealed in previous periods. 

In this section, an emergency logistics planning problem is considered and the meaning of demand 
uncertainty sets is explained. Then, we present a summary of experiments to test the performance of the 
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AARC approach. The AARC solution is benchmarked against an ideal solution with complete future 
information, deterministic LP, and sampling-based stochastic programming. Two test networks were 
chosen from Chiu et al. (2007) and Yazici and Ozbay (2007) for the numerical analysis. 
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2.5.1 Demand Modeling 
 
In an emergency logistics 

problem, a general approach 
to model time-varying 
evacuee demand is captured 
by the following steps: The 
first step of demand 
modeling is calculation of 
total demand. Next, demand 
arrival or vehicle departure 
rate is determined for 
describing a dynamic 
environment. For example, 
an S-shape curve can be 
used to represent the 
cumulative percentage of 
demand arrival. In most 
studies, it is assumed that 
the parameters (e.g., slope) 
of S-curve are unknown but 
a deterministic value. Since 
the parameters can be 
estimated with empirical 
data or simulation results, 
different research has shown 
different values (Radwan et 
al. 1985, Lindell 2008). 
However, in the real world, 
both the total number of 
demand and the departure 
rate are uncertain. By 
considering a box 
uncertainty or polyhedral 
uncertainty set, we can 
overcome the limitation of 
the deterministic S-curve 
and cover an infinite number 
of S-curves, including fast, 
medium, and slow response. 
Figure 1 shows the S-curve 
with upper and lower bound 
defined by box uncertainty. 
In Figure 2, polyhedral 
uncertainty set (box 
uncertainty and budget 
uncertainty) is shown and 
the upper bound of S-curve 
is limited by total demand. 
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2.5.2 Small Network Example 
 
In the first numerical experiment, a small network configuration is used to verify the performance of 

AARC from the illustrative example of Chiu et al. (2007). The network consists of 14 nodes, including 3 
source nodes and 1 super sink cell. The data of the transportation network is adopted from Chiu et al. 
(2007) except demand data, since deterministic demand was used in the original model. Also, we assume 
that the penalty cost (M) for unmet demand is 100. 

As mentioned before, we consider uncertain multi-period demand. In particular, the following 
mathematical formulation of the S-curve (Radwan et al. 1985) is adopted for demand loading. 

 
))),((exp1/(1=)( βα −−+ ttP  

 
where P(t) is the cumulative distribution with α = 1, the slope of curve, and β = 3, the median departure 
time. In both box and polyhedral uncertainty set, nominal demand at time t is calculated by multiplying 
(P(t) − P(t − 1)) with expected total demand. Also, the joint budget of demand uncertainty is assumed to 
be one and one-half times the sum of expected total demand. 
 
     2.5.3 AARC vs. DLP 
 

Based on the nominal data, uncertain demand in a polyhedral set is generated and tested. The 
uncertainty level θ is increased from 2.5% to 30%. First, objective values are calculated and emergency 
logistics plans are generated using M-DLP and M-AARC. Next, given the uncertainty level and 
evacuation plan, a simulated (or realized) objective value from Equation 1 is computed by generating 
random demand in the specified uncertainty set. Average values, standard deviation, and the worst-case 
solution of 1,000 simulated objective values are used to compare the traffic assignment solutions. 

The first objective of our experiments is a comparison of AARC and DLP under a polyhedral 
uncertainty set. Objective values of robust optimization approaches, which measure the worst case 
solution of the vehicle control plan, are computed and compared in Table 2 by changing the uncertainty 
level. DLP solution shows the cost when only deterministic nominal demand is dealt with. It is natural 
that the objective value of AARC with larger uncertainty level is bigger. Also, the objective value of DLP 
is smaller, since it is equivalent to AARC with zero uncertainty level.  

In simulation, the emergency logistics plan from inequality flow constraints has to be adjusted in some 
way, since we relaxed the constraint in Equation 2. We assumed that if there are fewer vehicles in a node 
than the vehicle flow plan, proportionate flow is allocated to each path. Also, any vehicles exceeding the 
plan will remain at the node and pay a penalty for not planning them. Table 2 shows the simulated 
objective value of ideal DLP, DLP, and AARC. Ideal DLP is the case where perfect future demand 
information is known at the beginning of the planning horizon. It is the lower bound of the simulated 
objective value. The average improvement of AARC over DLP is significant at a higher uncertainty level.  

The AARC problem with 14 nodes and 15 planning horizon has 36,600 constraints and 190,428 
variables. It is solved in about 44 seconds on a PC with Intel processor 1.87 GHz and 2 GB of memory. 
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Table  2: Objective value: polyhedral uncertainty  

    obj    avg    sd    worst 

θ     DLP    AARC    Ideal    DLP    AARC   Ideal    DLP   AARC    Ideal    DLP    AARC 

 0.025    350.10    358.18    354.35    417.13  355.34  1.08  15.14  0.91   356.54    452.33  357.17 

 0.05    350.10    366.27    358.59    484.25  359.70  2.16  30.19  1.76   362.97    554.56  363.27 

 0.075    350.10    375.24    362.85    551.49  364.88  3.26  45.10  2.97   369.83    656.80  370.73 

 0.1    350.10    384.35    367.33    618.81  370.72  4.57  59.95  3.78  377.14    759.03  378.44 

 0.15    350.10    402.57    376.78    753.49  381.79  7.20  89.63  5.35   391.76    963.49  393.29 

 0.2    350.10    420.80    386.35    888.23  397.50  9.70   
119.29  

6.14   406.38    1167.95  410.64 

 0.25    350.10    439.03    395.95    1023.00  410.17  12.17   
148.94  

7.90   421.00    1372.42  427.02 

 0.3    350.10    457.25    405.55    1157.77  420.57  14.63   
178.59  

10.12   435.61    1576.88  441.57 

 

3. Robust Optimization Model for a Dynamic Network Design Problem Under 
Demand Uncertainty 

3.1 Introduction 

Network design consists of a broad spectrum of problems, each corresponding to different sets of 
objectives, decision variables and resource constraints, implying different behavioral and system 
assumptions, and possessing varying data requirements and capabilities in terms of representing network 
supplies and demands.  Network design models have been extensively used as various types of strategic, 
tactical and operational decision-making tools and spanned over a variety of applications in, for example, 
transportation, production, distribution, and communication fields.  In a transportation network, traffic 
congestion has long been a major concern of the network operator, occuring when traffic volumes exceed 
the road capacity.  Network design problems (NDP) for transportation networks in general aim at 
minimizing network traffic congestion (or minimizing some general network-wide traveler costs) through 
implementing an optimal capacity expansion policy in the network. 

An optimal capacity expansion policy, however, may not be reached without properly considering the 
behavioral nature of travel demands, which are inherently time-variant and uncertain.  Travel demands are 
an aggregate result of individual travel activities, which are determined by various observed and 
unobserved socioeconomic factors and subject to geographical, technological, and temporal constraints.  
The vast body of the literature has focused on static deterministic NDPs (see, for example, Magnanti and 
Wong 1984; Minoux 1989; Yang and Bell 1998).  A major limitation of static network design models is 
the inability to capture traffic dynamics, such as traffic shockwave propagation and the buildup and 
avoidance of queues.  Dynamic models, on the other hand, allow us to model the time-dependent 
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variation of traffic flows and travel behaviors and hence better describe traffic evolution and interaction 
phenomena over the network (Peeta and Ziliaskopoulos 2001).  Travel demand uncertainty is not only the 
underlying characteristic of travel activities but also a likely result of our inaccurate or inconsistent travel 
demand estimation procedures.  Without explicit and rigorous recognition of uncertainty in travel 
demands, any transportation network development plans and policies may take on unnecessary risk and 
even result in misleading outcomes (Zhao and Kockelman 2002). 

The focus of this research is on a robust optimization (RO) based dynamic NDP under demand 
uncertainty, or more succinctly, a robust dynamic NDP (RDNDP).  The research community has observed 
a number of recent network design studies that explicitly incorporate demand uncertainty into NDPs with 
time-varying flows (see Waller and Ziliaskopoulos 2001; Karoonsoontawong and Waller 2007; Ukkusuri 
and Waller 2008).  The common feature of these problems is that time-varying flows are described by the 
cell transmission model (CTM) (Daganzo 1994, 1995) and the network flow pattern is then characterized 
by CTM-based dynamic traffic assignment (DTA) methods, under either the system-optimal 
(Ziliaskopoulos 2000) or user-optimal assignment mechanism (Ukkusuri and Waller 2008).  The demand 
uncertainty of these problems is accommodated by a chance constraint setting, a two-stage recourse 
model, or a scenario-based simulation method.  These techniques, however, suffer from deficiencies 
related to lack of data availability and problem tractability, which limit their applicability to a broad range 
of applications.  Resulting models from these stochastic modeling methods are often computationally 
intractable and require known probability distributions. 

We follow a similar fashion to form our RDNDP using the CTM-based system-optimal DTA model, 
but employ the RO approach to account for demand uncertainty.  Given the fact that the CTM-based DTA 
model has a linear programming (LP) formulation, we use the set-based RO method (Ben-Tal and 
Nemirovski 1998, 1999, 2000, 2002) to form a tractable LP model for the RDNDP, which overcomes the 
limitations of previous stochastic optimization methods.  Specifically, in our RDNDP, no probability 
distribution is presumed; instead, we only need to simply specify an uncertain set, which is readily 
available in most applications.  The solution feasibility is guaranteed by the RO method through the use 
of the prescribed uncertainty set and can be readily made computationally tractable through an 
appropriate reformulation. 

The main contributions of this work can be summarized as follows:  
• The authors developed an RO framework for the RDNDP.  For simplicity, we present our RO 

model only for single-destination, system-optimal networks.  However, the basic RO counterpart 
formulation method can be readily transferred to the user-optimal and multi-destination problem cases.  
This work adds to the body of knowledge in dynamic network design by presenting an emerging method 
related to the solution robustness.   

• An appealing feature of our robust counterpart problem is that it still has an LP formulation, so it 
is in general computationally tractable and can be solved in polynomial time by a few well-known 
solution algorithms. 

• Our numerical experiments demonstrate the value of RO in the context of dynamic traffic 
assignment and network design problems.  The computational viability is illustrated for the proposed 
modeling framework.  The numerical analysis for the impact of a bounded investment budget and demand 
uncertainty level on network design solutions justifies the solution robustness. 

 

3.2 Literature Review 

Numerous NDPs for transportation applications have been presented in the past three decades (see 
Magnanti and Wong 1984; Minoux 1989; Yang and Bell 1998).  These NDPs are distinguished by a 
variety of problem settings and supply and demand assumptions.  The literature review presented in this 
section by no means provides a comprehensive survey of general network design problems or of network 
design applications in the transportation field; instead, our discussion is focused on those network design 
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models and solution methods with data uncertainty, particularly network design problems with time-
varying flows. 

A great amount of attention has been paid to NDPs with data uncertainty in past years, and various 
modeling techniques have been used for dealing with uncertain input data and parameters.  The main 
approaches can be classified into two groups: stochastic programming (SP) and robust optimization (RO).  
The SP approach requires known probability distributions of the uncertain data and includes techniques 
such as the Monte Carlo sampling approach and chance-constrained programming.  For example, Waller 
and Ziliaskopoulos (2001) solved an NDP under uncertain demands where the probability distributions of 
demand rates are known a priori.  They used a CTM-based, system-optimal NDP formulation with chance 
constraints.  Ukkusuri and Waller (2008) extended the CTM to model both the system-optimal and user-
optimal NDPs and presented the formulations of a chance-constrained NDP model and a two-stage 
resource NDP model to account for demand uncertainty. 

Mulvey et al. (1995) proposed a scenario-based RO approach for general LP problems.  
Karoonsoontawong and Waller (2007) applied this approach to a CTM-based dynamic NDP with 
stochastic demands under both the system-optimal and user-optimal conditions.  A similar RO model 
formulation approach was employed by Ukkusuri et al. (2007), in which a scenario-based robust NDP 
with discrete decision variables was tackled by a genetic algorithm.  The limitations of a scenario-based 
RO approach are similar to stochastic programming in that we must know the probability of each scenario 
in advance, and it is computationally expensive when there are a large number of scenarios. 

Recently, a variety of papers have used the set-based RO technique to characterize optimization models 
with data uncertainty.  Interested readers are referred to Ben-Tal and Nemirovski (2002) and Bertsimas et 
al. (2011) for reviews of the set-based RO methods.  For NDPs with stochastic demands, Ordonez and 
Zhao (2007) formulated and solved a static multicommodity NDP with demand and travel time 
uncertainties bounded by polyhedral sets.  Mudchanatongsuk et al. (2008) extended the work by Ordonez 
and Zhao by considering some generalized assumptions on demand uncertainty, in which they discussed a 
path-constrained NDP and introduced a column generation method to solve the robust NDP with 
polyhedral uncertainty sets.  Atamturk and Zhang (2007) formulated and solved a NDP by using the two-
stage RO method and taking advantage of the network structure for its solutions.  To characterize their 
uncertainty sets they used a budget of uncertainty, which limits the number of observed demand values 
that can differ from nominal values.  They also discussed the numerical results for a simple location-
transportation problem and compared the two-stage robust approach with the single-stage robust approach 
as well as two-stage, scenario-based stochastic programming. 

There have also been approaches where the set-based RO approach is used to construct discrete 
network design models.  For example, Lou et al. (2009) described a discrete NDP with user-equilibrium 
flows based on the concept of uncertainty budget and proposed a cutting-plane method for problem 
solutions; Lu (2007) addressed a discrete user-equilibrium NDP with polyhedral uncertainty sets using the 
RO approach and used an iterative solution algorithm to solve the problem. 

To the best of our knowledge, no work has been done in applying the set-based RO technique to 
investigate a NDP with dynamic flows and uncertain demands.  In this work, our effort is given to 
analytically developing and numerically analyzing the robust counterpart model of such an NDP in the 
context of transportation network design. 

 

3.3 Deterministic Model 

This section presents the deterministic version of the dynamic NDP model we have discussed, or the 
DDNDP model in abbreviation, which provides the basic modeling platform and functional form for the 
RDNDP model we will introduce in the next section.  For discussion convenience, let us first present the 
notation used throughout these models (see Table 3). 
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Table 3: Dynamic NDP notation 
Sets Description 
τ  Set of discrete time intervals, },...,1{ T  

C  
Set of cells, },...,1{ I , including the set of sink cells ( SC ) and the set of source cells 

( RC ) 

A  
Adjacency matrix, }{ ijaA= , where each ),( ji  component, ija , equals 1 if cell i  is 

connected to cell j , and equals 0 otherwise 
Parameters Description 

t
id  Demand generated in cell i  at time t  
t
ic  Travel cost in cell i  at time t  

t
iN  Capacity in cell i  at time t  

t
iQ  Inflow/outflow capacity of cell i  at time t  
t
iδ  Ratio of the free-flow speed over the backward propagation speed of cell i  at time t  
ix̂  Initial number of vehicles of cell i  

B  Total investment budget available for capacity expansion 
if  Conversion coefficient of investment cost of cell i  for a unit increase of ib  

iχ  Increase in capacity of cell i  for a unit increase of ib  

iϕ  Increase in inflow/outflow capacity of cell i  for a unit increase of ib  
Variables Description 

ib  Investment cost spent on cell i  
t
ix  Number of vehicles staying in cell i at time t  
t
iy  Number of vehicles moving from cell i  to cell j  at time t  

  
The network design problem aims at minimizing the sum of the total system travel cost and the 

capacity expansion cost.  To avoid the permanent traffic holding phenomenon, the travel cost in cell i at 
time t , t

ic , is set as follows: 
 

⎩
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⎧
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=
TtCCiM
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c
S

St
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,\    1
 

where M  is a sufficiently large, positive number.  The big- M  value can also simply serve as a penalty 
cost, for example, in emergency evacuation networks, representing the potential loss of life and property 
caused by vehicles that do not arrive at the destination by the end of the time horizon.  Use of the penalty 
cost has the effect of minimizing the number of vehicles staying in an evacuation network. 

Now the DDNDP model can be written, using the notation listed in Table 1: 
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The objective function includes both the travel cost and expansion cost.  Note here that the expansion 

cost appears in the objective function and is subject to the investment budget constraint, which makes this 
formulation different from the traditional charge design problem (where the expansion cost term is only 
included in the objective function) and budget design problem (where the expansion cost term only 
appears in the investment budget constraint). 

The constraint set of the DDNDP model specifies the capacity expansion limit, flow conservation and 
propagation relationships, initial network conditions and flow non-negativity conditions.  The flow 
conservation constraint (i.e., Equation 1) for cell i at time t  can be generalized by setting t

id  to be zero in 
ordinary and sink cells.  Constraints 2 and 4 are the bounds for the total inflow rate and total outflow rate 
of cell i at time t .  Equation 3 bounds the total inflow rate into a cell by its remaining space, and 
Equation 5 bounds the total outflow rate of a cell by its current occupancy.  Equation 6 sets the upper 
bound on the sum of capacity investments over all cells.  The remaining constraints from Equation 7 
through Equation 11 set initial network conditions and flow non-negativity conditions. 

 

3.4 Robust Formulation 

Now we develop the robust counterpart of the DDNDP model, which incorporates the demand 
uncertainty into an LP program via the RO approach.  In the deterministic version, Equation 1 is the only 
set of constraints related to the demand generation.  This equality constraint can be rewritten as an 
inequality constraint (Waller and Ziliaskopoulos 2006), 
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It is assumed that all possible demand instances of 
t
id  belong to a box uncertainty set, 

)],1(),1([ t
i

t
i

t
i

t
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ddU t
i

θθ +−=                 (13) 

where t
id   is the nominal demand level and t

iθ  is the demand uncertainty level.  Then, the robust 
counterpart of Equation 12 with demand uncertainty becomes 
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This is equivalent to the following inequality, 
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which becomes the flow conservation constraint for the RDNDP model.  The above conversion of the 
flow conservation constraint leads the RDNDP to be in a deterministic functional form with the maximum 
possible demand in the box uncertainty set.  Given that other constraints can be directly transferred from 
the DDNDP model to the RDNDP model, the RDNDP formulation can be written into the following LP 
form: 
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In Equation 16, the value of  )1( 11 −− + t
i

t
id θ is the maximum possible demand in cell i at time 1−t , 

according to the uncertainty set 1−t
id

U , which represents the worst-case scenario.  Therefore, the optimal 

solution will remain feasible for all instances of demand.  In other words, we will obtain an optimal 
solution with the cell capacity values that are adequate for any realized demand scenarios within the 
uncertainty set 1−t

id
U . 

When other types of uncertainty sets such as an ellipsoidal uncertainty set or a polyhedral uncertainty 
set are assumed, different deterministic formulations are derived.  For example, the equivalent tractable 
robust counterpart with an ellipsoidal uncertainty set is a conic quadratic problem; if a polyhedral 
uncertainty set is assumed, it becomes a linear problem (see Yao et al. 2009 for details). 

 
Property 1.  The optimal objective function value of the RDNDP monotonically decreases with respect 

to the investment budget level. 
 
Proof.  Let the objective function of RDNDP be )(* Bzr , given the total budget level B Without loss 

of generality, we assume that two budget levels 1B  and 2B  are given as 21 BB < .  Since the RDNDP 

with 2B  has a larger feasible region than the RDNDP with 1B , )( 1
* Bzr  is smaller than or equal to 

)( 2
* Bzr , i.e.  )()( 2

*
1

* BzBz rr ≤ .  ■ 
 

3.5 Numerical Analysis 

The purpose of presenting computational experiments in this section is twofold: (1) to demonstrate the 
difference between robust network design solutions and corresponding nominal solutions from DDNPP; 
and (2) to illustrate the advantage of the RO approach for network design under demand uncertainty.  
Two numerical examples are selected from the literature for the experiments: (1) a smaller network with 
16 cells and 15 time intervals; and (2) a larger network with 167 cells and 300 time intervals.  For each 
example, the authors derived the optimal capacity investment solutions and the objective function values 
from the DDNPP and RDNDP models with various demand uncertainty levels.  To evaluate the solution 
robustness, we also conducted a parallel simulation experiment to randomly generate 100 demand 
instances within the given box uncertainty set.  The objective function values from the simulation 
experiment are also evaluated by solving the embedded DTA problem based on the same capacity 
expansion scheme as the one derived by the RDNDP model. 

 
3.5.1  A Toy Network  
 
The first experiment uses the test network shown in Figure 3 and the data set in Table 4, which are 

from Ukkusuri and Waller (2008).  Since they considered a set of deterministic demands, it was assumed 
that the demand data in their paper are nominal values of the network design problem under uncertainty.  
Let us assume that uncertain demands from source cell 1 and 14 are [2(1- θ ), 2(1+ θ )] at time 0 and 1, 
and [1(1- θ ), 1(1+ θ )] at time 3.  Note that when θ  is equal to 0, the uncertainty sets become the 
nominal values.  The investment cost coefficient ( if ) and penalty cost ( M ) for this example are set to 0.1 
and 10, respectively. 
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Figure 3: Cell representation of the toy network (Ukkusuri and Waller 2008) 

 
 

Table 4: Cell characteristics of the toy network (Ukkusuri and Waller 2008) 
Cell 2 3 4 5 6 7 8 9 10 11 12 15 16 

t
iN

 
4 4 4 4 4 2 4 4 4 4 4 4 4 

t
iQ

 
1 2 2 2 1 2 1 2 1 2 1 1 1 

ix̂
 

0 0 0 0 0 0 0 0 0 0 0 0 0 

 
 
3.5.1.1  Optimal Solutions under Different Uncertain Levels 

  
The objective function value is calculated and plotted as the total budget level is varied from 0 to 80 in 

the interval of 1 unit.  Figure 4 shows the change of the objective function values of the DDNDP and 
RDNDP models with three different uncertainty levels (including,  θ  = 0.1, 0.2 and 0.3).  As the budget 
level increases, the objective function value of the RDNDP model decreases and it converges to a certain 
value.  Robust solutions are the best worst-case solutions and thus their objective function values are 
greater than those of the corresponding deterministic cases.  Note that any nominal solution is equivalent 
to its robust solution with the zero uncertainty level (θ  = 0). 
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Figure 4: The objective-budget relationship under different demand uncertainty levels 

 
In all the above cases, the same cells (including cells 7, 9, 11, 15 and 16) are chosen for capacity 

expansion, which indicates that they are bottleneck cells in the network.  However, the proportions of the 
investment on the cells are dependent on the investment budget level and the demand uncertainty level.  
Figure 5 shows the investment distribution over the cells.  The implication behind these distribution 
curves is that the investment strategy should be changed depending on the budget bound we set and the 
demand uncertainty degree we expect to face. 

It is readily observed that there is a critical/maximum investment point associated with the investment 
budget level, beyond which a higher investment does not reduce the travel cost, or a higher investment 
even increases the objective function value if it is used for capacity expansion in the network.  For 
example, this maximum investment point is between 30 and 40 monetary units in the DDNDP case, and 
the point is about 70 monetary units in the RDNDP case with θ  = 0.3.  The critical investment point can 
be interpreted as the threshold for investment: when the budget is less than this threshold, the marginal 
travel cost (reduction) is greater than the marginal construction cost (increase); when the budget is greater 
than the threshold, the marginal travel cost (reduction) is less than the marginal construction cost 
(increase). 
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(a) The DDNDP Model    (b) The RDNDP Model (θ  = 0.1) 

   
(c) The RDNDP Model (θ  = 0.2)   (d) The RDNDP Model (θ  = 0.3) 

Figure 5: Optimal investment distributions over the network 
 

3.5.1.2  Worst-Case Analysis 
  
After obtaining the investment solutions from the DDNDP and RDNDP models, we then evaluated the 

relative improvement of robust solutions from their corresponding nominal solutions under the worst-case 
scenario.  The relative improvement, RI , in this study is defined as:  

r

rd

TC
TCTC

RI
−

=  

where dTC  is the total travel cost from the nominal solution and rTC  is the total travel cost from the 
robust solution. 

The following worst-case analysis consists of two parts.  First, we fixed the demand uncertain level θ  
and increased the investment budget level B .  The computation results are shown in Table 5 and Figure 
6.  When the budget level is low, it is natural that there is little difference between the nominal and robust 
solutions.  Moreover, when the investment budget is less than 10 monetary units, the model always 
selects cell 7 as the site for capacity expansion, in that it is a merging cell and the bottleneck of the 
network.  The total travel cost associated from the robust design solutions is slightly lower than that of the 
corresponding nominal solutions when the total budget is between 10 and 35 units.  We can also see that 
the robust solutions significantly outperform the nominal solutions when the budget is large enough and 
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the demand uncertainty is on a sufficiently high level.  However, the relative improvement of the robust 
solution against the nominal solution shown in Figure 6 is not necessarily a monotonically increasing 
function with respect to the investment budget level.  Though rTC  and dTC  both decrease as the 
investment budget level increases, the travel cost reduction rates of the two terms change over the budget 
level, which is a result of the tradeoff between marginal investment costs and marginal travel costs in the 
two different problem cases. 

 
Table 5 Total travel cost of robust and nominal solutions in worst-case scenarios 

Budget 
θ  = 0.1 θ  = 0.2 θ  = 0.3 
DDND

P 
RDND

P 
DDND

P 
RDND

P 
DDND

P 
RDND

P 
0 86.7 86.7 97.4 97.4 109.1 109.1 
10 79.7 79.7 89.4 89.4 99.6 99.6 
20 77.2 76.7 86.4 85.77 95.7 95.35 
30 75.03 74.87 83.73 83.65 92.85 92.8 
40 74.7 73.53 83.4 82.15 92.35 90.98 
50 74.7 72.9 83.4 80.73 92.35 89.48 
60 74.7 72.9 83.4 79.8 92.35 87.98 
70 74.7 72.9 83.4 79.8 92.35 86.7 
80 74.7 72.9 83.4 79.8 92.35 86.7 

 
 

 
Figure 6: Relative improvement of travel cost in worst-case scenarios under  

different demand uncertainty levels 
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Figure 7: Relative improvement of travel cost in worst-case scenarios under  

different investment budget levels 
 
Next, we fixed the total budget level B  at four different levels (including 30, 40, 50 or 60 monetary 

units) with the demand uncertainty level θ  ranging from 0 to 0.5.  The computation result is depicted in 
Figure 7.  We can see that with a lower budget level, the demand uncertainty has a weaker effect on the 
performance of the RDNDP model.  However, the solution of the RDNDP model may be largely different 
from the solution of the corresponding DDNDP model when the budget level is relatively high.  Similar 
to Figure 6, we can also observe that the relative improvement of the total travel cost of the robust 
solution against the nominal solution is not always a monotonically increasing function with respect to the 
demand uncertainty level. 

 
3.5.1.3 Simulation results 

 
Finally, we evaluated the objective function by implementing the robust network design solutions and 

nominal solution with random demands generated by the given box uncertainty sets.  Specifically, 100 
sets of random data generated from a beta distribution (i.e., beta[5, 2]) were used for this evaluation.  The 
mean, standard deviation, and maximum values of the objective function values generated from the 
simulation experiment are shown and compared in Table 6.  It can be seen that, in almost every case, the 
mean objective function value of the robust solutions is better than that of the nominal solutions; in all 
cases, the standard deviation and maximum values of the robust solutions are less than or equal to those 
of the nominal solutions.   
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Table 6: Comparison of Simulation Results 
(a)  θ  = 0.1 

Budget 
Mean Standard Deviation Maximum 
DDNDP RDNDP DDNDP RDNDP DDNDP RDNDP 

0 80.66 80.66 1.52 1.52 83.55 83.55 
10 74.36 74.36 1.27 1.27 77.10 77.10 
20 72.01 71.78 1.35 1.29 75.16 74.81 
30 70.06 70.18 1.38 1.30 72.78 72.72 
40 69.82 68.95 1.07 1.01 72.55 71.55 
50 69.62 68.34 1.20 1.07 72.14 70.56 
60 69.64 68.35 1.16 1.04 71.88 70.39 
70 69.62 68.34 1.09 0.98 71.61 70.02 
80 69.64 68.36 1.32 1.18 72.79 71.18 

 
(b)  θ  = 0.2 

Budget 
Mean Standard Deviation Maximum 
DDNDP RDNDP DDNDP RDNDP DDNDP RDNDP 

0 85.27 85.27 2.96 2.96 93.02 93.02 
10 78.22 78.22 2.51 2.51 83.35 83.35 
20 76.16 75.69 2.50 2.41 82.14 81.51 
30 73.90 73.83 2.47 2.44 78.84 78.76 
40 73.56 72.62 2.49 2.34 78.58 77.33 
50 73.51 71.49 2.35 2.18 78.82 76.48 
60 72.92 70.39 2.68 2.44 77.92 74.89 
70 73.41 70.83 2.20 1.96 78.75 75.57 
80 73.65 71.05 2.63 2.35 80.03 76.78 

 
(c)  θ  = 0.3 

Budget 
Mean Standard Deviation Maximum 
DDNDP RDNDP DDNDP RDNDP DDNDP RDNDP 

0 90.21 90.21 4.24 4.24 99.54 99.54 
10 82.88 82.88 4.20 4.20 90.37 90.37 
20 79.86 79.44 3.64 3.61 87.50 86.97 
30 77.30 77.24 3.99 3.98 86.49 86.58 
40 77.42 76.34 3.57 3.52 84.98 83.85 
50 76.83 74.57 3.45 3.23 84.96 82.33 
60 76.88 73.72 3.92 3.57 85.75 81.93 
70 76.88 73.72 3.92 3.57 85.75 81.93 
80 77.57 73.64 3.52 3.19 84.35 79.85 
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3.5.2  The Nguyen-Dupis Network 
  
Now we present a second numerical example to show the computational tractability and the 

performance consistency with the RDNDP model in larger networks.  The Nguyen-Dupis network with 
13 nodes in total (including 2 source nodes and 1 super sink node) is considered here (see Figure 8).  An 
equivalent cell network with 167 cells is created from the original node-link version.  The resulting 
RDNDP model from the Nguyen-Dupis network has 96,794 constraints and 190,694 variables, which has 
been solved in about 60 seconds on a PC with an Intel 1.87Ghz CPU and 2GB RAM using 
GAMS/CPLEX. 

 

5 6 74 8

9 10 11 2

13 3

1 12r

r

s

s

14

 
Figure 8: The node-link topology of the Nguyen-Dupis network 

 

 
Figure 9: The objective-budget relationship under different demand uncertainty levels 

 
Figure 9 shows the optimal objective function values of the DDNDP and RDNDP models with three 

different demand uncertainty levels.  As similar to the previous example, there is a set of cells that are 
chosen for capacity expansion (where, in this case, there are 36 cells in total) in the Nguyen-Dupis 
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network, which delivers a similar objective-budget relationship to the previous toy example.  Investment 
decisions vary with different demand uncertainty levels. 

The relative improvement of the robust solutions from the corresponding nominal solutions in the 
worst-case scenarios is aggregated in Figures 10 and 11.  It is shown from Figure 10 that the robust 
solution significantly improves the nominal solution when the investment budget level is greater than 
2,200 monetary units, in particular when the demand uncertainty level is high.  A similar phenomenon 
can be observed from Figure 11. 

 

 
Figure 10: Relative improvement of travel cost in worst-case  

scenarios under different demand uncertainty levels 
 

 
Figure 11: Relative improvement of travel cost in worst-case  

scenarios under different investment budget levels 
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Finally, the simulation results are compared in Table 7.  It was found that the simulated objective 
function values from DDNDP and RDNPD are comparable when the investment budget level is less than 
1,500 monetary units.  However, the robust solutions provide a lower travel cost when the investment 
budget goes higher.  Our computational results show that the robust solution is more attractive than the 
nominal solution from the simulation experiment. 
 

Table 7: Comparison of the robust optimization results and simulation results 

(a)  θ  = 0.1 

Budget 
Mean Standard Deviation Maximum 
DDNDP RDNDP DDNDP RDNDP DDNDP RDNDP 

0 7631.63  7631.63  111.42  111.42  7846.08  7846.08 
1500 6488.78  6488.61  91.84  91.42  6685.74  6684.25 
2500 6391.82  6366.79  78.54  75.08  6549.64  6517.81 
3500 6380.82  6353.72  78.88  75.25  6530.00  6497.45 

 
(b)  θ  = 0.2 

Budget 
Mean Standard Deviation Maximum 
DDNDP RDNDP DDNDP RDNDP DDNDP RDNDP 

0 7976.02 7976.02 204.57 204.57 8395.07 8395.07 
1500 6788.14 6784.49 182.44 179.68 7192.98 7185.69 
2500 6671.00 6645.71 149.01 143.96 7030.38 6990.74 
3500 6666.09 6614.52 154.87 146.25 7006.21 6937.27 

 
(c)  θ  = 0.3 

Budget 
Mean Standard Deviation Maximum 
DDNDP RDNDP DDNDP RDNDP DDNDP RDNDP 

0 8389.44  8389.44  369.82  369.82  9046.43  9046.43 
1500 7096.40  7089.95  272.83  269.47  7847.98  7838.24 
2500 6963.85  6931.39  251.54  241.73  7494.99  7441.00 
3500 6957.23  6878.45  297.76  278.49  7520.06  7414.78 

 
 
  

4. Conclusion 

4.1 AARC Conclusions 

In Section 2, we applied the RO methodology to the CTM-based SO DTA model under demand 
uncertainty. In particular, AARC was formulated for dealing with a multi-period transportation problem 
to find an robust and uncertainty-immunized solution, which is especially important in an emergency 
logistics problem. Two S-shaped curves with upper and lower bounds were introduced by considering 
uncertainty sets, which are appropriate for modeling uncertain demand. With the linear decision rule for 
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an approximated solution and the appropriate reformulation technique, AARC becomes a linear 
programming problem and hence computationally tractable. The objective value obtained is the 
guaranteed upper bound within a prescribed uncertainty set. Although the AARC solution does not 
guarantee optimality, we find that the AARC approach leads to high-quality solutions compared to the 
deterministic problem and the sampling-based stochastic problem. 

However, we do not argue that AARC approach always outperforms the stochastic programming. The 
proposed AARC method is favorable when either reliable information on probability distribution of 
uncertain parameter is not available or decision makers want to find a strongly guaranteed performance 
without facing an infeasible solution, even in an extreme case. In those cases, RO can outperform the 
traditional stochastic programming approach. Also, the purpose of RO is quite different from sensitivity 
analysis with variation of parameters. RO finds an uncertainty-immunized solution for a pre-described 
uncertainty set, while sensitivity analysis is a post-optimization tool to test the stability or perturbation of 
an optimal solution (Ben-Tal and Nemirovski 2000). 

Our work has focused on the CTM-based SO-DTA problem by using affine control rule for uncertain 
demand. The reason for using the linear decision rule is to derive a computationally tractable problem. 
However, theoretically, we do not know how the approximation makes the robust solution be deviated 
from the optimal solution. The approximation approach is used based on the belief that it is important to 
provide a solvable problem in the emergency logistics field (Shapiro and Nemirovski (2005), Remark 2). 
The scope of future work could be extended to consider control beyond linear decision rule and to explore 
large scale examples. Moreover, a robust optimization approach can be applied to different uncertainty 
sources (e.g., capacity uncertainty or cost uncertainty) and alternative transportation problems like 
dynamic network design. 

There are other issues raised from this work. One of these issues is that an LP-based CTM model 
allows vehicle holding, which may be unrealistic. The RO approach can be applied to alternative 
deterministic mathematical formulations (e.g., Nie [2010]) to overcome this issue. Extension to 
considering an unbounded uncertainty set with globalized robust optimization (Ben-Tal et al. 2006) is 
another interesting research direction. 

 

4.2 RNDP Conclusions 

In Section 3, we formulated and solved the RDNDP, a robust network design problem for dynamic and 
uncertain demands, and numerically evaluated its solution performance.  The appealing LP formulation of 
the RDNDP model is rooted from the underlying LP-based DTA model―CTM.  A box uncertainty set is 
assumed for modeling uncertain demands.  Through this NDP example, we demonstrate how the 
constraints affected by uncertain parameters can be manipulated to derive a tractable mathematical 
program. 

Since it becomes particularly important to provide a solution that is robust to extreme events and 
reduce the variance of cost after the realization of uncertain parameters (Waller and Ziliaskopoulos 2006), 
the authors chose a beta distribution (which is an asymmetric distribution) to model random demands and 
conduct a worst-case analysis.  The RO approach can provide better network design solutions that 
produce lower objective function values than the corresponding deterministic approach, especially at a 
high demand uncertainty level and a high investment budget level. 

Numerous future research directions remain.  First, the RDNDP model with various types of 
uncertainty sets, including a polyhedral uncertainty set or an ellipsoidal uncertainty set, should be 
investigated to find a less conservative solution.  Second, the ambiguous chance-constrained 
programming can be applied to the model when we have more information about the uncertain data.  For 
example, this approach may be particularly interesting when we only know the support and mean of 
uncertain parameters or when we know that demand can arise from a set of distributions.  Third, while we 
dealt with the RDNDP with a single-destination, system-optimum network setting, which has potential 
applications in emergency evacuation planning, optimal traffic detouring, lower-bound evaluation of 
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traffic systems, etc., the user-optimal and multi-destination versions of the same problem are worth 
further investigation and evaluation along the track of RO. 
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