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1. Introduction 

Congestion pricing is widely studied as an efficient method for managing transportation congestion 
externalities by inducing travel behavior that minimizes social cost. Typically, congestion pricing models 
assume that demand is known in advance and deterministic values of demands are used to find optimal 
tolls. However, system performance can be negatively impacted when inelastic, deterministic demands 
are employed, especially when demands depart significantly from their expected nominal values (Waller 
et al. 2001, Gardner et al. 2008). Also, precise travel demands are virtually impossible to obtain, due to 
specification errors and imperfect data that plague real-world forecasting. Accordingly, in this report, we 
consider robust congestion pricing problems in the presence of transportation demand uncertainty. 

Since the initial exploration of road pricing by Pigou (1920), both the theoretical and applied literatures 
on congestion pricing has grown rapidly. The congestion pricing problem may be classified using four 
criteria: (1) first-best or second-best pricing, (2) static or dynamic traffic assignment, (3) homogeneous or 
heterogeneous users, and (4) deterministic or stochastic parameters. The literature review presented herein 
focuses on second-best congestion pricing problems, particularly in dynamic traffic assignment with 
homogeneous users, instead of providing a comprehensive survey on congestion pricing problems. A 
more comprehensive review is provided by Yang and Huang (2005). 

Since the first-best pricing problem calculates tolls based on the difference between social and private 
marginal cost over all links in a network, it is thought by many not to be applicable to real-world traffic 
networks. Therefore, second-best pricing, wherein a subset of arcs can be tolled, is gathering increasing 
attention from researchers and practitioners (Lindsey and Verhoef 2001, Lawphongpanich and Hearn 
2004). In the case of a dynamic transportation network, Henderson (1974) explained the importance of 
departure time decisions and showed the influence of time in varying congestion tolls using the single 
bottleneck model by Vickrey (1969). Subsequently, congestion pricing for the bottleneck model has been 
investigated by various researchers (Arnott et al. 1990, Arnott and Kraus 1998, Yang and Huang 1998, 
Braid 1996, De Palma and Lindsey 2000). However, these works have limited their attention to very 
simple networks and have not stressed computability. In the context of general networks, Carey and 
Srinivasen (1993) provided analytical approximate expressions for congestion tolls using the Kuhn-
Tucker optimality condition. Wie and Tobin (1998) formulated a convex optimal control problem for 
first-best dynamic marginal tolls. A simulation-based analysis to determine the impact of six types of link 
tolling schemes was conducted by De Palma et al. (2005). Lin et al. (2010) proposed a heuristic 
combining dual variable approximation techniques using a linear programming model based on the cell 
transmission model. There are several papers considering a bi-level or MPEC formulation of second-best 
pricing. Viti et al. (2003) proposed a framework for the joint choice of route and departure times in light 
of tolls; therein departure time and route choice are modeled sequentially and a simple grid search 
approach is used to find optimal, uniform tolls. By contrast, Joksimovic et al. (2005), model departure 
time and route choice simultaneously, while also using a simple grid search to find optimal, uniform as 
well as time-varying tolls. Wie (2007) assumed triangular shaped, multi-step congestion tolls to maximize 
consumer surplus and proposed the Hooke-Jeeves algorithm to compute them.  

In the area of congestion pricing under uncertainty, Gardner et al. (2008) proposed a stochastic 
mathematical programming model with equilibrium constraints to determine robust first-best tolls in the 
presence of uncertain demand. The objective of that effort was to minimize a weighted sum of expected 
total travel time and standard deviation for a finite number of pre-determined demand scenarios. Nagae 
and Akamatsu (2006) formulated a stochastic singular control problem for second-best toll pricing. In 
their report, toll price was selected from a set of tolls to maximize expected net profit value.  

Our research differs from the aforementioned work in some important ways. Our robust optimization 
(RO) approach means that we will not assume the availability of a probability distribution for the 
underlying uncertain data. Moreover, our RO approach guarantees feasibility through the use of 
prescribed uncertainty sets (e.g., see Ben-Tal and Nemirovski 1999 and Bertsimas and Sim 2004). 
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Recently, an RO approach was employed by Ban et al. (2009) for robust road pricing corresponding to 
multiple traffic assignment solutions with fixed demand. Lou et al. (2010) also studied robust congestion 
pricing; their aim was to minimize total system travel time in light of a distribution of all possible 
boundedly rational user equilibriums. 

The main focus of this report is the formulation and solution of robust congestion pricing problems in 
which only a subset of the links in a transportation network can be tolled. We apply a robust optimization 
approach to the dynamic user equilibrium optimal toll problem with demand uncertainty. In describing 
uncertain demand, it is assumed that uncertain demands are drawn from a predefined box uncertainty set. 
As we shall show, this perspective is acceptable when a decision maker wants to determine tolls for a 
specific transportation network component (such as a tunnel, bridge or highway) without knowing exact 
travel demand distributions. 

One challenging aspect of robust congestion pricing is the user equilibrium condition. Under user 
equilibrium, ignoring demand uncertainty for the moment, the nominal problem can be modeled with a 
bi-level formulation as a mathematical program with equilibrium constraints (MPEC) that expresses user 
equilibrium condition as a variational inequality (VI) appearing as a family of constraints. We consider 
the dynamic optimal toll problem with equilibrium constraints (DOTPEC) with demand uncertainty. We 
note that there are several types of toll collecting policies in the literature (e.g., uniform toll in Viti et al. 
(2003), time-varying toll selection with pre-determined price levels in Nagae and Akamatsu (2006), the 
triangular shape in Wie (2007), etc.). For simplicity, we assume that the toll shapes are determined in 
advance through an external selection process that specifies triangular-shaped tolls. Due to certain 
properties of triangular-shaped tolls that are discussed subsequently, it is only necessary to decide the 
value of the maximum toll for each tolled arc in order to determine the toll trajectory within any pre-
determined time interval. This toll-setting mechanism is coupled to the deterministic DOTPEC problem 
to formulate a robust counterpart; we then apply the cutting plane algorithm in conjunction with a 
simulated annealing algorithm to set optimal dynamic user equilibrium tolls. 

 
 

2. Robust Congestion Pricing for Dynamic Traffic Networks 

In this section, as a foundation of a robust dynamic congestion pricing problem, we first introduce a 
deterministic DOTPEC problem which has been studied by Friesz et al. (2007). The key portion of the 
DOTPEC problem is the time-shifted DUE formulation in network loading part given in Friesz et al. 
(2001). As flow propagation constraints hold the time-shift in equation, it is difficult to handle them, 
especially in the computation perspective. However, Friesz et al. (2011) derive the DAE system that 
describes the network loading when the point queue model is invoked, and it may be efficiently and 
accurately approximated using a related system of ordinary differential equations by using the second-
order Taylor expansion for flow propagation constraints. In the following sections, we briefly describe the 
network loading approach in Friesz et al. (2011) and introduce the deterministic DOTPEC problem as 
well as the robust counterpart. For discussion convenience, the notations used throughout these models 
are presented in Table 1. 
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Table 1. Notations 
Symbol Description 
,i j N∈  Nodes in the network 
a A∈  An arc in the network 
w W∈  An origin-destination pair 

wp P∈  A path between OD pair 
[ ]apΔ = Δ  The arc-path incidence matrix 
[ ]wpΛ = Λ  The OD pair-path incidence matrix 
[ ]wQ Q=  The vector of traffic demand 
[ ]ph h=  The vector of path flows 
[ ]af f=  The vector of arc flows 

( ) [ ( )]p pc h c h=  The vector of path travel time function 
( , ) [ ( , )]ph y h yθ θ=  The vector of path travel cost function with toll 

[ ]ay y=  The vector of congestion toll on arc  a
[ ]aδ δ=  The vector of defining tolled arc; 1aδ = if arc  is tolled, otherwise 0 a

 
 
2.1 Dynamic Network Loading 
 

The purpose of the dynamic network loading is to find arc flow and delay when travel demand and 
departure rates (path flows) are given. Dynamic network loading is closely related to the determination of 
path delays, since arc delay is the sum of the delays on paths using an arc. Mathematically, the volume on 
arc  is written as a

 
( ) ( )p

a ap a
p P

x t x t aδ
∈

A= ∀ ∈∑  (1) 

where ( )p
ax t denotes the volume on arc associated with path and a p

1 if arc  belongs to path 
0 otherwise.                         ap

a p
δ

⎧
= ⎨
⎩

. 

To describe flow propagation, we make use of the simple deterministic arc delay model in Friesz et al. 
(1993). By the recursive relationship of exit time function, the exit time from arc for path is defined 
as  

p P∈

 ( )
1 1 1

p
a a at D x t p Pξ ⎡ ⎤= + ∀⎣ ⎦ ∈  (2) 

 
( ) ( )( ) ( )

1 1
, 2,

i i i i i

p p p
a a a a at D x t p P i m pξ ξ ξ

− −
⎡ ⎤ ⎡ ⎤= + ∀ ∈ ∈ ⎣ ⎦⎣ ⎦

 (3) 

where is the time required to travel on arc a1 of every path ( )
i ia aD x t⎡⎣ ⎤⎦ 1 2 ( ){ , ,..., }m pp a a a P= ∈ . The exit 

time function allows us to derive the following flow propagation constraints (see details in Friesz et al. 
2001)  

 
( )( ) ( )( ) ( )

1 1 1 1 1 1

'1a a a a a a pg t D x t D x t x h t⎡ ⎤ ⎡ ⎤+ + =⎣ ⎦ ⎣ ⎦ &
 (4) 
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( )( ) ( ) ( )( ) ( ) ( )

1

'1 ,
i i i i i i i

p p
a a a a a a a 2,g t D x t D x t x t g t p P i m p

−
⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + = ∀ ∈ ∈⎣ ⎦⎣ ⎦ ⎣ ⎦ &

 (5) 

where  and 
0

,(k p
p ah g= )k ( )

i

p
ag t  are the departure rate and exit flow on arc along path  at time , 

respectively. A second order Taylor series approximation of equations 4 and 5 yields 
ia p t

 
( )( ) ( ) ( ) ( ) ( ) ( )( )1 11 1

1 1 1 1 1 1

2
2

2

p p
a aa ap p

a a a a a a

D x tdg t d g t
2

g t D x t g t D x t p P
⎡ ⎤⎣ ⎦⎡ ⎤ ⎡ ⎤+ ≈ + + ∀⎣ ⎦ ⎣ ⎦dt dt

∈
 (6)

 

 ( )( ) ( ) ( ) ( ) ( ) ( )( )
( )

2
2

2 , 2,
2

i ii i

i i i i i i

p p
a aa ap p

a a a a a a

D x tdg t d g t
g t D x t g t D x t p P i m p

dt dt

⎡ ⎤⎣ ⎦⎡ ⎤ ⎡ ⎤ ⎡+ ≈ + + ∀ ∈ ∈⎣⎣ ⎦ ⎣ ⎦ ⎤⎦

P∈

 (7) 

Next, the total traversal time for path  may be expressed using equations 2 and 3: p

 
 (8) ( ) ( )

( )

( )
( )

1
1

i i m p

m p
p p p

p a a a
i

D t t t t pξ ξ ξ
−

=

⎡ ⎤= − = − ∀⎣ ⎦∑

We assume that the effective delay includes an arrival penalty operator F ; thus, the effective delay 
operator is 

 
 (9) p p p Ac D F t D T p Pτ⎡ ⎤= + + − ∀ ∈⎣ ⎦

where  is the desired arrival time and AT 20.5( )p A p AF t D T t D Tτ⎡ ⎤+ − = + −⎣ ⎦
τ . When the departure rates 

are known, the arc exit flows, volumes and delays can be obtained. Let us define the traffic volumes given 
 as 

ˆ( )h t

ˆ( )h t

 ( ) ( )p
a ap a

p P
x t x t aδ

∈

A= ∀ ∈∑ . (10) 

Using equation 2, arc exit time of the first arc on a path can be computed, and then the arc exit time 
function for the remaining arcs in the path are computed with equation 3. After getting the path exit time 

, the effective path delay may be computed as  
( )

( )
m p

p
a tξ

 
( )

( )
( )

( )
( ), ( )

m p m p

p p
p a ac t h t t t F t Tξ ξ A

⎡ ⎤= − + −
⎣ ⎦

. (11) 

2.2 Dynamic User Equilibrium 

We have studied the approximated network loading in the previous section, which allows us to solve 
the dynamic user equilibrium efficiently. Furthermore, it is certain that we have to consider the efficient 
toll which should exist in the form of effective path delay operator. Hearn and Yildirim (2002) studied the 
efficient toll in the static congestion pricing with the linear travelling cost for traffic flow. The objective 
of the efficient toll is to make the user equilibrium traffic flow equivalent to the system optimum by 
appropriate congestion pricing. To study the dynamic efficient toll problem, we introduce the notion of a 
tolled effective delay operator: 

 ( ) ( )( ) ( ), ,p p p A pt h t y t D F t D T y t p Pθ ⎡ ⎤= + + − + ∀ ∈⎣ ⎦  (12) 
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where  denotes the toll for path . It is easy to observe that ( )py t p

 ( ) ( )( ) ( )( ) ( ), , ,p pt h t y t c t h t y tθ = + p . (13) 

Therefore, a dynamic tolled user equilibrium must obey 

 
( ) ( )( ) ( ) ( )( )

0

* *, , 0,
ft

p
p P t

t h t y t h t h t dt hθ
∈

− ≥ ∀ ∈∑ ∫ Ω

( ) ( )
0

, 0,
ft

p w p
p P t

h t dt Q h t w W
∈

⎧ ⎫⎪ ⎪Ω = = ≥ ∈⎨ ⎬
⎪ ⎪⎩ ⎭
∑∫

 (14) 

where . 

Dynamic user equilibrium is the solution from variational inequality equations, equation 14. However, we 
may mention that equation 14 is equivalent to a differential variational inequality (DVI). This can be 
shown easily by noting that the flow conservation constraints can be restated as 

 

( )

0

,

( ) 0,
( ) ,

w

w
p

p P

w

w f w

ds
h t w W

dt
s t w W
s t Q w W

∈

= ∈

= ∈

= ∈

∑
 (15) 

which is recognized as a two-point boundary value problem. In equation 15,  and  h ws  are departure rate 
and dummy variable for flow conservation constrains with respect to total demand Q , respectively. 
Therefore, the constraints (14) may be expressed as the following differential variational inequality 

w

 
( ) ( )( ) ( ) ( )( )

0

* *, , 0,
ft

p
p P t

t h t y t h t h t hθ
∈

− ≥ ∀ ∈∑ ∫ Ω
 (16) 

where ( ) 00; , ( ) 0, ( ) ,
w

w
p w w f w

p P

ds
h h t s t s t Q w

dt ∈

⎧ ⎫⎪ ⎪Ω = ≥ = = = ∈⎨ ⎬
⎪ ⎪⎩ ⎭

∑ W . 

We note that a vector of departure rates (path flows) *h ∈Ω  is a dynamic user equilibrium if and only 
if  solves differential variational inequality. However, it is quite complicated to solve the differential 
variational inequality due to the fact that the effective path delay operator 

*h

( ) ( )( )*, ,p t h t y tθ  is typically 

neither monotonic nor differentiable. In this study, according to Friesz et al. (2011), we adopt an iterative 
fixed-point method in Hilbert space for a fixed-point problem equivalent to the differential variational 
inequality.  

2.3 Robust Dynamic Congestion Pricing Problem 

The DOTPEC is a type of dynamic network design problem for which a central authority (upper level 
objective function) tries to minimize congestion in a transport network whose flow obeys a dynamic 
network user equilibrium by dynamically adjusting tolls. In order to consider the dynamic optimal toll 
problem, it is obvious that the dynamic tolled user equilibrium and the dynamic system optimum problem 
should be considered at the same time. Consequently, the deterministic DOTPEC problem has the form of 
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a dynamic system optimum objective function with the dynamic tolled user equilibrium as constraints. As 
mentioned before, the DOTPEC is a type of MPEC. Now, we introduce the DOTPEC problem as 
following 

 

( )( ) ( )

( ) ( )( ) ( ) ( )( )

0

0

* *

min ,

. .

, , 0,

f

f

t

p p
p P t

t

p
p P t

LB UB

z c t h t h t dt

s t

t h t y t h t h t dt h

y y y

θ

∈

∈

=

− ≥ ∀ ∈

≤ ≤

∑ ∫

∑ ∫ Ω

 (17) 

where .
 

( ) ( )
0

, 0,
ft

p w p
p P t

h t dt Q h t w W
∈

⎧ ⎫⎪ ⎪Ω = = ≥ ∈⎨ ⎬
⎪ ⎪⎩ ⎭
∑∫

Next, we assume that the uncertain demand belongs to box uncertainty sets as defined in equation 18. 
The box uncertainty set is used in RO when the support of uncertain data is known, which is a relatively 
mild assumption on uncertain data and easy to get. 

 
(1 ), (1 )

ww Q w wQ U Q Qθ θ⎡ ⎤∈ = − +⎣ ⎦  (18) 

The given formulation for a deterministic DOTPEC problem is also an MPEC problem, which is a class 
of non-convex optimization problem. After introducing uncertainty set , we may recognize that the 
number of constraints for DVI is infinite due to the infinite number of demand scenarios in . This fact 
compounds the difficulty of the MPEC problem. 

QU

QU

2.4 Solution Algorithm 

In this section, we adopt a heuristic algorithm to deal with general cases inspired by Yin and 
Lawphongpanich (2007). They proposed a cutting plane (or constraint accumulation) algorithm for a 
robust network design problem and provided the convergence of the optimal solution under some 
assumptions. In order to apply a cutting plane algorithm approach to solve the robust counterpart, we need 
to assume a finite number of candidate total demands from equation 18: 
 

 
{ }1 2ˆ , ,..., nQ Q Q Q=

 (19) 

then the relaxed robust DOTPEC (R-RDOTPEC) can be written as 

 

 (20) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

1

0

0

1, ,

1

* *

min (R -RDOTPEC)

subject to

, 1,...,

, , 0, , 1,...,

f

f

h y z

t
i i

p p
p P t

t
i i i i i

p
p P t

LB UB

z

c t h t h t dt z i n

t h t y t h t h t dt h Q i n

y y y

θ

∈

∈

≤ ∀ =

− ≥ ∀ ∈Ω =

≤ ≤

∑ ∫

∑ ∫
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where ( ) 0
ˆ0; , ( ) 0, ( ) , ,

w

i
i i i i i iw

p w w f w w w
p P

ds
h h t s t s t Q Q Q

dt ∈

⎧ ⎫⎪ ⎪Ω = ≥ = = = ∈ ∈⎨ ⎬
⎪ ⎪⎩ ⎭

∑ w W .
 

The optimal solution  is a robust optimal solution given finite number of uncertain demand scenario 
. Then, the WCD problem is solved to find the worst-case scenario given (

*y
ˆ

wQ *ŷ y= ) and update . ˆ
wQ

 

 (21) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( )
0

0

2

2

* *

max ( )
. .

,

ˆ, , 0, , 1,...,

f

f

t
i i

p p
p P t

t
i i i i i

p
p P t

z WCD
s t

c t h t h t dt z

t h t y t h t h t dt h Q i nθ

∈

∈

≤

− ≥ ∀ ∈Ω =

∑ ∫

∑ ∫

where ( ) 00; , ( ) 0, ( ) , ,
w

w

i
i i i i i iw

p w w f w w Q
p P

ds
h h t s t s t Q Q U

dt ∈

⎧ ⎫⎪ ⎪Ω = ≥ = = = ∈ ∈⎨ ⎬
⎪ ⎪⎩ ⎭

∑ w W . 

For a given , the objective function of WCD is to find a demand scenario in  whose dynamic user 
equilibrium flow yields the maximum total travel cost. If  is the solution to the WCD problem and 

ŷ QU
*Q *

2z  
with  is less than or equal to *Q *

1z , then  is a robust optimal toll. On the contrary, if ŷ *
2z  with  is larger 

than 

*Q
*
1z , then an improved solution may be obtained by solving the relaxed R- RDOTPEC problem by 

adding the  to the demand scenario set such as *Q { }*Qˆ ˆQ Q= ∪ . Finally, we may show that the algorithm 

itself has the form given below: 

Cutting Plane Algorithm 

Step 0 Set  and determine initial demand scenario . 1k = 1Q̂

Step 1 Solve R- RDOTPEC with finite number of demand scenarios . Let Q̂ ( )1 ,k kz y  be the objective value 

and the optimal congestion price. 

Step 2 Solve WCD with given toll price . Let ky ( )2 ,k kz d  be the objective value and worst-case demand. 

Step 3 If 2 1
k kz z≤ , stop and  is a robust congestion price vector. Otherwise set ky { }1ˆ ˆk k kQ Q d+ = ∪  and 

1k k= + . Go to Step 1.  

We note that the cutting plane algorithm is a heuristic approach and it can be applied for general problems 
with both convex and nonconvex uncertainty sets. It may be worth explaining how to solve the R-
RDOTPEC problem and the WCD problem. There are a few papers on dynamic transportation network 
problems (e.g., Friesz et al. 2007; Wie 2007). In this study, we extend a simulated annealing approach 
applied by Friesz et al. (1992) to solve R-RDOCTPEC and WCD. Kirkpatrick et al. (1983) proposed a 
simulated annealing approach to find out a relation to the mechanics of annealing solids. The concept of a 
simulated annealing is based on the atomic state in the system. For example, if the system’s temperature 
is high, its atoms are in a highly disordered state. Producing a more ordered state of atoms requires 
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reducing the energy of the system by lowering its temperature. Atoms will achieve an equilibrium state at 
any fixed temperature. Interestingly, the scheme employed to reduce temperature may be applied as the 
form given below: 
 

Simulated Annealing Algorithm 

Step 0 Determine an initial value  (temperature at stage ),  (step size distribution), , and kT k kQ ( , )m ky M  
(the number of iteration at each temperature stage); set 1k =  for temperature stage and m  where  is 
the iteration at each temperature stage. 

1= m

Step 1 Solve the DVI problems and find objective value ( )( , ) ( , )m k m kyΨ for given  and  where ˆ
wQ ( , )m ky ( , )m ky

is the value of  on the  mth step at kth
  temperature stage; otherwise go to Step 6. y

Step 2 If , in order to determine a candidate optimal solution, the enhancement variables are m M<
randomly perturbed from their current values according to 

  (22) ( ) ( ) ( )1, , ,m k m k m ky y y+ = + Δ

where , u  is a random vector, and each  is randomly and independently chosen from the 
normalized interval 

( ),m k ky QΔ = u iu

3, 3⎡ ⎤−⎣ ⎦ . 

Step 3 Solve the variational inequality problem for given  ( 1, )m ky +

Step 4 If ( ) ( )( 1, ) ( 1, ) ( , ) ( , ) ( , ) ( 1, ),m k m k m k m k m k m ky y y+ + +Ψ < Ψ ← y  and 1m m= + . Then go to Step 2. 

Otherwise go to Step 5. 

Step 5 Calculate the 

 
( )

( ) ( )1, ,

exp
m k m k

k
B

P
k T

+⎛ Ψ −Ψ
ΔΨ = −⎜⎜

⎝ ⎠

⎞
⎟⎟

 (23) 

where Bk  is the Boltzman constant and compare with a random number [ ]0,1R∈ . If R  is less than or 
equal to , then the  and ( kΔΨ )P ( , ) ( 1, )m k m ky y +← 1m m= + . Then go to Step 2. Otherwise the  
and  and go to Step 2. 

( , ) ( , )m k m ky y←

1+m m=

Step 6 Calculate k
iA  and  k

ijS

 
( , )1
i

M
k m
i aA y

M
= ∑

1

k

m=

  (24)

 

 
( )( )( , ) ( , )1

i j

M
k m k k m k
ij a i a jS y A y

M =

= −∑
1

k

m
A−

 (25) 
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The covariance matrix s  for the next temperature stage 1k +  is chosen as follows 

1k kss S
M
χ
β

+ =  

where sχ  is the growth factor, typically > 1. 

Step 7 Obtain corresponding to any desired covariance matrix 1kQ + s  

( )1 1 1 Tk k ks Q Q+ + += �  

Then  and (1, ) ( , ) 1, , 0k M k k k ky y Q Q T+← ← = .8 kT 1k k= + .Then go to Step 1. 

 

3. Numerical Example 

The purpose of the numerical experiments in this section is to illustrate the advantage of the RO 
approach for congestion pricing under demand uncertainty. We implemented an algorithm with 
MATLAB and GAMS and solved a dynamic congestion pricing problem. A 3-arc and 4-node network in 
Figure 1 is considered to illustrate a robust DOTPEC problem. The set of OD pairs are ( ){ }(1,4), 2,4=W  
and uncertain travel demand for each OD pair; that is [ ]1,4 2,4, 90,11∈ 0Q Q . The commuting period is 

between t  =08:00AM and 0 ft  =09:00AM. The desired arrival time is 08:30AM for OD pairs (1,4) and 
(2,4). The parameters used for the linear arc delay function D Aa a ay aB xa= + +  are given by 4 0 1.003 f+ , 

 and  13 0y f+ + .0025 12 0.002 f+  from arc 1 to 3, respectively. We solved this problem using the cutting 
plane algorithm proposed in Section 2, which is solved in around 53 minutes. The congestion toll is 
charged from 08:15AM to 08:45AM and the maximum toll of the R-DOTPEC problem is 9.78 with total 
cost of 5740.4. This means that the total travel cost is at most 5740.4 with the robust toll price. In contrast, 
the maximum toll of the deterministic solution is 8.71 and the objective value is 5154.3. Figure 2 shows 
the optimal dynamic congestion price on arc a  for both the deterministic problem and the robust 
counterpart. The path flow and tolled travel cost for the deterministic problem are shown in Figures 3 and 
4. 

2

 

 

 

 

 
 
 

1

2

3 4

a1

a2

a3

Figure 1. Three-arc, 4-node network 
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Figure 2. Toll price on arc  2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Departure rate and tolled unit travel cost for path 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Departure rate and tolled unit travel cost for path 2 
 
Next, we compare the robust solution with solutions from the deterministic problem. Simulation results 

are summarized in Table 2. Using the robust solution, the worst-case objective value among 100 random 
demands is 5740.4. The worst objective value is 5799.1 with the deterministic DOTPEC solution and 
sampling-based approach, respectively. We can see that the robust solution provides a guaranteed upper 
bound of objective value and performs well in terms of the worst-case solution, mean, and standard 
deviation, even though the improvement of the robust solution is not significant in this toy problem. 
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Table 2. Simulation results 
 Nom Rob Imp 
Worst Case 5799.1 5740.4 1% 
Mean 5215.9 5182.9 1% 
Standard Deviation 355.26 330.42 7% 

 

4. Conclusion 

In this study, we considered a robust optimization approach to user equilibrium optimal toll problems 
in dynamic transportation networks. A robust DOTPEC problem was solved iteratively using a cutting 
plane algorithm. During each iteration in the cutting plane algorithm, there were two problems to be 
solved: a relaxed robust DOTPEC and a worst-case demand problem. Furthermore, for each single 
problem, there were two sub-algorithms embedded: a fixed-point algorithm for solving variational 
inequality constraints, and a simulated annealing algorithm for solving a bi-level problem to get the toll 
price. For the numerical experiments, we used a 3-arc and 4-node network. As shown in the results, the 
worst-case result from the robust solution is better and the robust solution provides a more stable 
objective value than the nominal solution.   

In future studies, we will consider a certain type of adjustable robust counterpart (ARC), in which the 
robust optimal solution is a function of uncertain demand to incorporate realized demand, which may 
gives us a less conservative solution for dynamic network problems. In particular, we can consider an 
affine adjustable robust counterpart to explore a tractable solution.  In this study, we only considered 
fixed but uncertain demand data. We can extend our formulations to consider the elastic demand case and 
other types of uncertainty. For example, Ban et al. (2009) considered the uncertainty due to non-unique 
user equilibrium solution, and Lou et al. (2010) considered a solution set of boundedly rational user 
equilibrium. Also, there may be other sources of uncertainties, including preferred arrival time and 
parameters of penalty function. Finally, more efficient algorithms are highly desirable to solve practical 
large-scale problems. 
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