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1 Introduction 

1.1 Assessment of Traffic Data Quality 

Traffic data collection, within the context of transportation operation and management, is 
becoming an increasingly valuable asset in today’s transportation arena. Significant traffic data 
have been generated from Intelligent Transportation System (ITS) technologies in recent years 
and more data are anticipated through the emerging Connected Vehicle technology. The data 
have been widely utilized in managing system operations and providing information on traffic 
conditions. However, public and private users are finding that the utilization and operation of the 
data is an increasingly difficult task since the data are collected with different levels of accuracy 
and resolution, and data formats are incompatible. Furthermore, the problem worsens as the 
amount of data continues to grow. The quality of data in data collection, operation, and 
management efforts has resulted in the underutilization of data and increased utilization costs. 
Various problems were identified in recent research efforts regarding the quality of data for 
transportation operations, planning, traffic congestion information, transit and emergency vehicle 
management, and/or commercial truck operations. 

Data quality has been questioned since the earliest stages of traffic data collection. Since a 
variety of ITS applications and various travel information systems have unique data 
requirements, the matter of data quality has become more urgent. Furthermore, in the last few 
years, this intricacy has been made more complex due the emergence of private services which 
are providing traffic information services to the public. Turner (2004) gave a definition of data 
quality as “the fitness of data for all purposes that required it. Measuring data quality requires an 
understanding of all intended purposes for that data”. Traffic data have different meaning(s) to 
different consumers and the intended uses of data should be considered and understood when 
designing, implementing and operating data collection systems and applications.   

There are numerous reasons for such deficiencies in provision of accurate and timely traffic data 
to general public. For instance, in the case of travel time data, apart from sensor errors, 
communication line failures, and use of naïve estimation methods, the fact that posted travel 
times are typically based on instantaneous realized travel times (as opposed to predictions) 
should be counted as the main contributor to the distrust among users and agency officials alike. 

Traditional data collection systems may not assure the quality of data that satisfy the state-of-the-
art transportation applications. There are urgent needs that the specific data quality measures 
should be considered for each traffic data application.  This project will investigate the data 
quality measures for transportation data and present an overview of the requirements for the use 
of these data in various real-time and non-real-time transportation applications. As a case in 
point, this project specifically focuses on travel time data quality requirements. To ensure the 
highest quality travel time data, we propose that traffic data from different sources should be 
considered and every attempt should be made to complement stream of data from point sensors 
with more accurate data that might become available every once in a while. In this context, 
accuracy, update rate and intrinsic value of different traffic data sources should be considered. 
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1.2 Motivation for Dynamic Travel Time Prediction 

Congestion has proven to be a serious problem across urban areas in the United States. In 2007, 
it cost highway users 4.2 billion extra hours of sitting in traffic and an extra 2.8 billion gallons of 
fuel. This all translated into an additional $87.2 billion in congestion costs for road users in 2007, 
which showed a 50% increase in cost compared to data from the previous decade. Even though 
the recent economic downturn is said to have marginally eased the congestion problem 
nationwide, new evidence shows an uptrend of traffic and, consequently, congestion is back 
(Schrank and Lomax 2007). 

Tackling congestion (both recurrent and non-recurrent) has proven to be a challenge for highway 
agencies. Adding capacity in response to congestion is becoming less of an option for these 
agencies due to a combination of financial, environmental, and social issues. Therefore, the main 
focus has been on improving the performance of existing facilities through continuous 
monitoring and dissemination of traffic information. The minimum that can be accomplished is 
to inform the public or, specifically, the potential users of what they should expect on the 
roadways before and during their trips. Additionally, this information can be applied to provide 
alternatives to users so that they may make informed decisions about their trips. This is the 
essence of Advanced Traveler Information System (ATIS) applications such as 511 that have 
been implemented nationwide. In many states relevant traffic information is also posted on 
variable message signs (VMS) that are strategically positioned along the highways. However, the 
effectiveness of such efforts and the accuracy and usefulness of information they provide have 
been questioned (Peeta and J. L. Ramos 2006). 

There are numerous reasons for such deficiencies in providing accurate and timely traffic data to 
the general public. Apart from sensor errors, communication line failures, and use of naïve 
estimation methods, the fact that posted travel times are typically based on instantaneous realized 
travel times (as opposed to predictions) should be counted as the main contributor to the distrust 
among users and agency officials alike. To remedy this situation, we propose that traffic data 
from different sources be considered and every attempt be made to complement stream data from 
point sensors with more accurate data that might become available at certain points in time every 
once in a while. In this context, the accuracy, update rate, and intrinsic value of different traffic 
data sources should be considered. Low-cost stationary traffic sensors are most prevalent but 
have greater measurement errors. Conversely, probes are essentially able to provide an accurate 
trajectory (time and location) of the vehicle as it passes through a road segment. 

In addition to traffic estimation, this study uses privately available data from INRIX to predict 
travel times. Since the study area extends over 95 freeway miles the travel times are in the range 
of 2 hours during peak periods. This long prediction horizon makes predictions based on 
macroscopic modeling approaches inadequate. Consequently, historical data are used to develop 
a data-driven approach for mid-range predictions (e.g., 1- to 2-hour predictions). 

2 Literature Review 

Travel time estimation and prediction problem can be classified in many different ways: 
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First, they can be grouped based on the facility type on which the problem needs to be solved. 
For instance, travel time estimation in facilities with interrupted flow should be treated 
differently from estimations performed on facilities with uninterrupted flows. While a lot of 
effort in the past has been spent to estimate travel times in the latter facility types (e.g. freeways), 
very few studies report on methods to estimate or predict travel times over the interrupted 
facilities (e.g. arterials). 

Second, in many practical cases, proposed methods are limited to data readily available from 
existing traffic sensing technologies. This would include stationary sources such as inductive 
loop detectors and road side microwave radars. Vehicle re-identification data from license-plate 
or toll-tag readers can provide a sample of travel times. Finally, probes are capable of not only 
providing a travel time sample but they also will give insight to the evolutions of traffic 
conditions over space and time inside the segment under study. Methods to fuse data from 
different sources and to establish a hybrid estimate of travel time are gaining more popularity. 

The third aspect that can be used to distinguish between different travel time estimation and 
prediction methodologies is the inductive (non-parametric) or deductive (parametric) nature of 
the proposed methods. In broad terms, inductive methods are data-driven and make extensive use 
of historic observations. Given a representative data set, inductive methods are shown to have a 
good performance in predicting travel times under recurrent traffic conditions. On the other 
hand, deductive methods take into account physical principles governing traffic operations and 
resulting interactions between different traffic parameters and various external factors affecting 
traffic. Therefore, deductive methods are capable to handle unforeseen traffic situations and are 
equally useful in traffic control applications due to their normative nature as opposed to 
inductive models which have mere descriptive powers. 

The fourth characteristic of reported models can be defined with regard to their adaptive or non-
adaptive nature. In general, adaptive methods have more flexibility and are able to discern 
temporal changes in the traffic system under both recurrent and non-recurrent conditions. This is 
a very desirable feature since accurate travel time estimates are most needed when unforeseen 
conditions due to incidents, construction, inclement weather, and such arise. 

Last, but not least, property of travel time models is the inclusion of a sound vehicular traffic 
model in the estimation process. Unfortunately, the majority of methods reported in the literature 
are solely based on generic statistical techniques and do not make any effort to take advantage of 
the existing knowledge on traffic flow theory. 

Travel time estimation and prediction methods reported in the literature can be broadly classified 
into four groups according to their adopted methodology. 

1. Conservation of flow 

2. Kinematics 

3. Statistical 

4. Hybrid 



4 
 

 

2.1 Models Based on Eulerian Data 

2.1.1 Conservation of Flow (Input-Output Curves) 

The first group of methods for travel time estimation is based on the conservation of flow 
principle. Generally speaking, this principle states that vehicles entering a segment at upstream 
over some time along with the ones initially existing inside the segment are the ones that will 
leave the segment at the downstream during the same time or will remain in it at the end of the 
time period. This gives rise to the idea of obtaining travel times by comparing N-curves 
representing cumulative number of vehicles passing upstream (entering) and downstream 
(exiting) of the segment. This idea was first presented by Newell (1993) in which cumulative 
number of vehicle arrivals at a sequence of locations on a highway are used to estimate travel 
times, flow variations and shockwave creation and propagation. Cassidy and Windover (1995) 
describe a similar method for assessing the dynamics of freeway traffic. The methodology is 
more descriptive rather than normative (prescriptive). Figure 1 further illustrates the concept. In 
this figure, slope of the cumulative curves is equal to traffic flow (𝑞); the vertical distance 
between two curves at each time represents the accumulation of vehicles on the segment (𝑎) 
while the horizontal distance is equal to travel time (𝑇) on the segment under study. 

 

Figure 1. Cumulative input-output curves concept. 

𝑞(𝑥, 𝑑) = 𝑁̇(𝑥, 𝑑) (1) 

𝑁(𝑈, 𝑑) = 𝑁(𝐷, 𝑑 + 𝑇(𝑑)) (2) 
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𝑇(𝑑) = 𝑁−1(𝐷,𝑁(𝑈, 𝑑)) − 𝑑 (3) 

It may seem that counting the number of vehicles passing a point of the highway should be an 
easy process. Inductive loop detectors and a variety of stationary sensors are used to accomplish 
this task, but it is well-known that counts obtained using these technologies are less than perfect. 
In fact, ILDs which are not calibrated properly are susceptible to a phenomenon called drifting in 
which passage of some vehicles are missed. Such technological deficiencies along with the 
necessary knowledge of the initial number of vehicles in the segment for these methods to work 
have been the main impediments in widespread use of these methods. To this we can add the fact 
that the concept is primarily suitable for segments with no access/egress points in the middle. 
Otherwise, number of vehicles entering and exiting in the middle of the segment should be taken 
into account. 

Assuming that cumulative curves are continuous and smooth everywhere, Astraita (1996) took 
the derivative of both sides of equation (2) and derived the following relation between flow rates 
at upstream, downstream and travel time on the segment. It should be noticed that flow rates are 
easier to obtain and to work with than the cumulative number of vehicles. 

𝑞(𝐷, 𝑑 + 𝑇(𝑑)) = 𝑞(𝑈,𝑡)
1+𝑇′(𝑡)

 (4) 

Carey et al. (2003) propose a dynamic link travel time model based on the assumption that travel 
time is a non-decreasing function of the average surrounding flow experienced by a vehicle 
while traveling along the segment. They approximated this average flow as a linear combination 
of flow at the entrance and at the exit points of the segment as experienced by the vehicle. 

𝑇(𝑑) = 𝑓(𝛽𝑞(𝑈, 𝑑) + (1− 𝛽)𝑞(𝐷, 𝑑 + 𝑇(𝑑)))  (5) 

After substituting for downstream flow rate using equation (4), they obtained the following 
model. 

𝑇(𝑑) = 𝑓(𝛽𝑞(𝑈, 𝑑) + (1− 𝛽) 𝑞(𝑈,𝑡)
1+𝑇′(𝑡)

)  (6) 

And, after inverting and rearranging they obtained the following first-order ordinary differential 
equation. 

𝑇′(𝑑) = − 𝑓−1(𝑇)−𝑞(𝑈,𝑡)
𝑓−1(𝑇)−𝛽𝑞(𝑈,𝑡)

  (7) 

Carey (2004) shows that this model has some desirable properties, such as causality, first in first 
out (FIFO) and similarity to the static model when flows are constant. Carey and Ge (2007) 
examine several discrete time approximation methods for numerical solution of their proposed 
model (5). These approximations are in fact simple forward and backward differencing methods 
that are widely used for solving differential equations with no closed form analytical solutions. 
They point out that simple approximate solutions may be violating FIFO property. Therefore, to 
keep the FIFO property in approximate solutions, regardless of the size of discrete time intervals, 
an alternate differencing method is suggested which applies the backward differencing method 
while moving forward in time. They concluded that this model can be equivalently solved as a 
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simple optimization problem at each time interval. The optimization problem can be solved using 
simple line search algorithms such as golden section search. 

Vanajakshi and Rillet (2006) proposed an adjustment algorithm based on generalized reduced 
gradient (GRG) method to fix problems associated with accuracy of inductive loop detector 
records. In essence, this method attempts to make smallest changes in the readings while 
maintaining the condition that cumulative flow at successive detector points should be smaller or 
equal to that amount at upstream points. Also, the constraint for allowing practically possible 
maximum number of vehicles on any road segment at any time is enforced under this 
methodology. These two conditions in fact hold up conservation of flow principle in the traffic 
stream. Vanajakshi et al. (2009) used these adjusted detector readings to improve on the travel 
time estimation method originally proposed by Nam and Drew (1996, 1998, and 1999). 
Vanajakshi et al. (2009) suggest that the congested flow model (Nam and Drew 1998) should be 
used throughout, and that density to be estimated based on a source other than cumulative flows. 
They use the relationship between occupancy and density to estimate the latter. They report 
between 9 to 16 percent error in travel time estimates on a segment between two detector stations 
in their test case. This error increases up to 20 percent on a 2 mile corridor. 

Waller et al (2007) adopt an ARIMA(3,1,2) to forecast inflows to the freeway segment under 
study, then they use a meso-simulation technique called cell transmission model (CTM) to 
simulate propagation and movements of vehicles inside the segment. Later, based on cumulative 
flow curves at the segment endpoints they are able to forecast travel time. On a 3 mile freeway 
segment, they reported 10 to 23 percent RMSE on travel times predicted 5 minutes ahead using 
this method when compared with travel times obtained from VISSIM micro-simulation. 

2.1.2 Approximate Kinematic Models 

The second group is comprised of kinematic models. Kinematics is a branch of mechanics which 
deals with motion without regard to forces or energies that may be exerted on the objects under 
study. The basic notion of kinematics is that point speed of a vehicle at any given time is equal to 
the derivative of its trajectory at that time. Therefore, we can derive the relation between distance 
traveled, speed and travel time in an integral form, 

𝑋̇(𝑑) = 𝑣(𝑋(𝑑), 𝑑) (8) 

𝑋(𝑇) = 𝑋(0) + ∫ 𝑣(𝑋(𝑠), 𝑠)𝑑𝑠𝑇
0  (9) 

where, 

𝑋(𝑑) is the vehicle position at time 𝑑, and 

𝑣(𝑋(𝑑), 𝑑) is the vehicle speed at time 𝑑. 

The integral in equation (9) is difficult to estimate since in most cases the speed profile of a 
vehicle during its trip is not known. Instead, it is common to approximate this integral with point 
speed measurements at multiple points along the segment over which travel time is to be 
estimated. Specifically, in highway applications, speeds at upstream and downstream of the 
segment are usually available. 
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𝑋(𝑇) ≅ 𝑋(0) + �𝑣(𝑋(0),0)+𝑣(𝑋(𝑇),𝑇)
2

� 𝑇 (10) 

Therefore, travel time can be estimated as 

𝑇 ≅ 2𝐿
𝑣(𝑋(0),0)+𝑣(𝑋(0)+𝐿,𝑇)

 (11) 

where, 𝐿 is distance traveled or length of the segment [𝐿 = 𝑋(𝑇) − 𝑋(0)]. 

Equation (11) essentially suggests an iterative method to estimate travel times which is called 
dynamic time slice method in the literature Invalid source specified.. A further approximation 
of this formula would result in what is called instantaneous method in which downstream speed 
at the time vehicle enters the segment is used, 

𝑇 ≅ 2𝐿
𝑣(𝑋(0),0)+𝑣(𝑋(0)+𝐿,0)

 (12) 

Figure 2 illustrates the times and locations for which speeds are available and are being used to 
predict travel times versus what speeds should be used. Obviously, these approximations only 
work under stable traffic conditions when there is not much change in vehicle speeds over space 
and time. 

Lindveld et al. (2000) employed the harmonic mean of speeds to substitute the integral in 
equation (9) 

𝑋(𝑇) ≅ 𝑋(0) + � 2
1

𝑣(𝑋(0),0)+
1

𝑣(𝑋(𝑇),𝑇)
� 𝑇 (13) 

which results in the following estimate of travel time 

𝑇 ≅ 𝐿
2
� 1
𝑣(𝑋(0),0)

+ 1
𝑣(𝑋(𝑇),𝑇)

� (14) 
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Figure 2. Illustration of typical speed-based travel time prediction concepts. 

Further, they evaluated several kinematics based and flow correlation methods for travel time 
estimation and prediction in three different European sites (Amsterdam, Paris, and Padua-
Venice). The input data for these methods generally comes from inductive loop detectors. 
Evaluation results show that these methods produce RMSEP in travel time estimation/prediction 
well above 10% under free flow conditions, while as congestion increases their performance 
rapidly deteriorates. 

The kinematics methods are easy to use and provide inexpensive travel time estimation solutions 
which generally make use of existing sensing technologies and readily available data. However, 
they lose their accuracy as distances between consecutive sensing stations become large. Also, 
they are most accurate when traffic condition along the segment is stationary. As traffic 
conditions begin to change abruptly over time and/or space estimates from these methods 
become less reliable. 

Various technologies are in use to measure vehicle speeds passing a given point on the highway. 
Inductive loop detectors are among the earliest sensors used for this purpose. In the single loop 
setting the relationship between detector occupancy, volume, and vehicle length can be used to 
estimate spot speeds. For a single vehicle, relationship between time it has kept the detector in 
presence mode (𝑑𝑖), detector length (𝑙𝑑) , vehicle length (𝑙𝑖) and its speed (𝑣𝑖) is as follows, 

𝑑𝑖 = 𝑙𝑑+𝑙𝑖
𝑣𝑖

 (15) 

However, one should keep in mind that data usually is not available at a single vehicle level; 
instead aggregate data (20~30 seconds) is typically provided by detectors. Therefore, occupancy 
of detector measured as fraction of time detector has been in presence mode in an interval is 
defined as below. 
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𝑂 =
∑ 𝑡𝑖
𝑞
𝑖=1
∆𝑡

= 1
∆𝑡
∑ 𝑙𝑑+𝑙𝑖

𝑣𝑖

𝑞
𝑖=1  (16) 

where, ∆𝑑 is the time interval, and 𝑞 represents the number of detected vehicles in that same 
interval. 

Kurkjian et al. (1980) use an approach based on the first-order method of moments to estimate 
spot speeds using a single inductive loop detector. They effectively set the summation in (16) 
equal to its average times number of vehicles resulting in the following 

𝑞. 𝑙𝑑+𝑙𝑣
�

𝑣�
= ∑ 𝑙𝑑+𝑙𝑖

𝑣𝑖

𝑞
𝑖=1  (17) 

where, 𝑙𝑣� , is the mean effective vehicle length, and 𝑣̅ is the average speed during the interval. 

Substituting (17) into (16) the following relationship between spot speed, flow and occupancy 
may be obtained. 

𝑣̅ = 𝑞. 𝑙𝑑+𝑙𝑣
�

𝑂.∆𝑡
 (18) 

It should be noted that in this setting average vehicle length is not directly measured. Normally, a 
constant average vehicle length is considered in the above equation. This is a biased estimator. 
Hall and Persaud (1989) proposed to adjust the estimator by multiplying a correction constant, 
however they pointed out that the effect of the bias is not uniform and a constant adjustment 
factor is not sufficient. 

Dailey (1999) applied the Taylor’s expansion up to the first two moments of the space-mean 
speed measurements, resulting in a non-linear function of the population speed parameter. This 
function was then linearized and used as the observation equation of a state-space model which 
was then solved by Kalman filter for population speed parameter. Ye et al. (2006) pointed out 
that the expansion approach is not robust and greatly depends on the linearization, the choice of 
initial guess and/or changes in vehicular speed. Ye et al. (2006) and Bickel et al. (2007) also use 
Kalman filter method to estimate vehicular speeds. Hazelton (2004) performed Bayesian analysis 
and applied Markov Chain Monte Carlo (MCMC) approach based on the assumption that speed 
in consecutive intervals follow a random walk. This method simulates the posterior distribution 
of vehicle speeds with a great improvement on accuracy; however, this offline approach is not 
practical for online estimation. Li (2009a,b) proposes a non-Gaussian Kalman filter and a 
recursive method for online vehicular speed estimation 

Ahmed and Cook (1977) proposed a Box-Jenkins type model for flow and occupancy time series 
obtained from inductive loop detectors. Their model is essentially an ARIMA(0,1,3) model. 
They compared the performance of this model with three different smoothing algorithms; 
namely, moving average, double exponential smoothing, and exponential smoothing with 
adaptive response (Trigg-Leach method). However, they did not report on any modeling effort 
based on either travel time or speed data. 

In a double loop setting, ILDs are able to provide an accurate estimate of vehicle speed based on 
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the passage time lapse and distance between two loops. D’Angelo et al. (1999) proposed a non-
linear time series to predict point speeds at the location of dual loop detectors on freeway 
segments in the short term. Then these point speeds are simply extended to an area from 
midpoint of the upstream segment to the midpoint of the downstream segment to evaluate travel 
times. Ishak and Al-Deek (2002) made a comprehensive analysis of this method. However, in 
their evaluation they did not use any ground-truth travel time or speeds. Instead, they compared 
predicted point speeds with observations from loop detectors. One of the major findings of Ishak 
and Al-Deek (2002) is that increasing rolling horizon (the duration of traffic evolution prior to 
current time used in predictions) would increase the relative error of travel time predictions. This 
is a counter-intuitive observation, since we expect a model should perform better when it uses 
more historical data as input. Additionally, they found that this method produces substantial 
errors under congested flow conditions. Relative errors of up to 30 percent are reported in less 
than 20mph range. In 20 to 50mph range errors are as high as 20 percent. Only, at free flow 
speeds higher than 50mph, relative errors are reported to be less than 5 percent. 

Based on a simple shock wave analysis procedure and basic kinematic principle (8), Coifman 
(2002) proposed a method to build vehicle trajectories around the location of a dual loop detector 
placed in the middle or on either end of a basic freeway segment. These trajectories then can be 
used to estimate travel times on the freeway segment. Compared to the naïve travel time 
estimates such as (12) or (14), this method reduces the errors by almost half, but the average 
absolute error still remains at around 10 percent of the ground truth travel times. The accuracy of 
this method falls with increase in the length of the freeway segment under study. This method is 
based on the stationary assumption for traffic conditions all over the freeway segment and at all 
times. Therefore, under normal conditions where queues are formed and later dissipate, one 
detector depending on its location may not capture all the existing shock waves in the segment 
and time period of interest. 

Sun et al., 2008 proposed a method based on interpolating point speeds read in three consecutive 
detector stations to estimate travel time on the segment between detectors. This method simply 
fits a quadratic speed trajectory on three point speeds at these detector stations. For any departure 
time at first station, it is not clear how one should determine the arrival times at two downstream 
stations; speeds for which are to be used in building the speed trajectory. The reported test case 
exhibits errors of up to 55% in travel time estimates using this method. 

2.1.2.1 Non-linear filtering 

Treiber and Helbing (2002) propose an adaptive smoothing method which is essentially a non-
linear filter that transforms input stationary detector data into the smooth spatio-temporal 
functions. The non-linear filter is, in fact, an adaptive linear combination of two linear 
anisotropic low-pass filters each representing either free-flow or congested traffic status. Weight 
system in the linear filters is based on exponential functions with scaled relative space-time 
coordinates. The weight system in the upper combination level is a non-linear hyperbolic tangent 
function with bias toward congested traffic filter results. No quantitative measure for accuracy of 
travel time predictions using this method is given. However, visual evidence is given as to 
accuracy of estimations and predictions. 
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2.2 Models Based on Lagrangean Data 

Lagrangean data is comprised of vehicle trajectory data obtained from tracing probe vehicles 
inside the road segment of interest. For this reason, this data type may also be called internal 
data. In this sense, full/partial vehicle trajectories and speed profiles are an example of such data. 
Full trajectory data is considered very rich since it basically provide a complete record of a 
vehicle movement and the speeds and travel time it has experienced. In general, trajectory data is 
both expensive and brings about a host of privacy issues. Therefore, in practice, internal data are 
still very rare even though GPS and cellphone tracking applications are becoming more popular 
as traffic data sources. To address some of the privacy issues, some cellphone companies are 
using virtual trip lines (VTL) concept to detect passage speed of a sample of vehicles at a set of 
pre-specified locations which amounts to Eulerian data similar to speed data collected at loop 
detectors. However, (near) real-time trajectory data as a bi-product of fleet management 
operations has become available in recent years in certain corridors. The latter provides a major 
source of Lagrangean traffic data at an affordable cost for travel time estimation for commercial 
purposes. 

2.3 Models Based on Integrated Lagrangean Data 

2.3.1 Automatic Vehicle Re-Identification (AVI) 

Automatic license plate reader (ALPR), toll-tag readers and video processing systems capable of 
matching passing vehicles signatures between a pair of locations along the road are examples of 
these technologies. AVI data directly reflects realized travel times between two observation 
points, but at the same time it is more difficult to obtain compared to point measurements. 
Generally speaking, established traffic sensing technologies that are able to provide AVI data are 
both expensive and controversial in terms of exposing general public to privacy risks and 
therefore have found very limited geographical reach. As a result, earlier studies in this area tend 
to make use of widely available point sensors and to show that matching data from a pair of, for 
instance, loop detectors can result in accurate travel time estimates. In recent years, new 
emerging technologies have proved to be more effective in providing AVI data. Magnetic and 
Bluetooth matching sensors are examples of the new wave of AVI technologies. 

Hoffman and Janko (1990) are the first who reported on implementing a travel time prediction 
system using AVI data. In their study, data was obtained from infra-red transmitter/receivers 
installed at over 230 signalized junctions and 10 locations on urban freeways in West Berlin. A 
small fleet of vehicles were equipped with the same infra-red capability as well as position 
finding devices so that their passage time in front of static devices could be recorded. Their 
proposed prediction methodology mainly consists of forming a historic data set and estimation of 
average travel time for each time interval, then a correction factor in the form of ratio of the 
observed travel time in the last interval to that same interval’s historic average is used to predict 
current interval’s travel time. Unfortunately, no measure of accuracy for this method is reported. 

Dailey (1993) proposed a signature matching method for travel time estimation which uses 
cross-correlations between 5 sec vehicle counts from upstream and downstream inductive loop 
detectors at relatively short distances (0.5 mile is used in the reported example). In this method 
no effort is made to evaluate speeds from occupancy and therefore there is no need to estimate 
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average length of vehicles. The method chooses the lag associated with the maximum cross-
correlation value as the mean travel time between two consecutive detectors. The minimum 
acceptable cross-correlation value is reported as 0.4 which is shown to correspond to the 15 
percent occupancy level. It is postulated that with increase in the congestion level beyond this 
point, the rigidity in flow of traffic between two points diminishes. Therefore, the method is not 
suitable for congested situations. No effort to validate the results of this method against ground-
truth data has been reported. 

Coifman and Ergueta (2003) propose an algorithm along with four separately designed filters to 
match signals between two consecutive dual loop detector stations on a single lane. The 
algorithm identifies a set of feasible upstream pulses for each downstream pulse; each pulse 
representing the passage of a vehicle. Then all vehicles in this set which have an estimated length 
range that includes that of the corresponding downstream vehicle are incorporated into a vehicle 
match matrix. Visual inspection of this matrix suggests that, under stable traffic conditions, 
correct matches should form a long vertical sequence of entries in the matrix. The method is 
therefore based on finding the longest vertical sequence. To eliminate false positives, four tests 
are introduced; filter test, cone test, travel time test and multiple lane change test. Results of a 
reported test study on two separate 0.55 km freeway segments demonstrate the accuracy of the 
method to be extremely good in comparison with ground truth. A mere 1.45 percent average 
absolute percent error in travel time is reported in a case where there is no on/off ramp between 
two detector stations. However, in a setting where an off ramp exists on the studied segment no 
error measure is reported. 

Coifman (2003) considers the case of a pair of double loop detectors located at two ends of a 
freeway lane. In order to detect the start of congestion, he suggests that outstanding vehicle 
length estimates from downstream station be compared with length estimates from upstream 
station within a time window reflecting free flow travel times on the segment. If in consecutive 
time intervals such matches are not found then it is suggested that traffic is in congested mode. 
However, if a match is found then it provides a travel time estimate. This method works best 
when larger number of trucks (or any longer vehicles) is present in the mix. In his numeric test, 
Coifman managed to match 5% of traffic using this method. In its basic case, this may not be 
very valuable information since free-flow travel time is more or less a known constant (small 
variation). Therefore, he extends this method to the congested case by considering different 
travel speed ranges which results in a rudimentary method for travel time estimation under any 
traffic condition using existing point sensor technology. It should be noted that quantity of 
matches and also quality of estimates will decrease as congestion increases because during 
congestion more vehicles change lanes. 

2.3.1.1 Time Series Analysis/(Non)Linear Filtering 

Generally, methods falling in this category are based on signal processing ideas. It is conceived 
that travel time observations when ordered on the basis of the sequence of time intervals at which 
they have been measured provide a history of the evolution of a system. 

𝒀 = [𝑦𝑡] (19) 

Box, Jenkins, and Reinsel (1970) proposed statistical techniques to analyze time series. Auto 
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Regressive Integrated Moving Average (ARIMA) models provide a standard modeling 
framework in a typical time series analysis. The 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) model is expressed as, 

�1 − ∑ 𝜑𝑖𝐵𝑖
𝑝−𝑑
𝑖=1 �(1− 𝐵)𝑑𝑦𝑡 = �1 + ∑ 𝜃𝑖𝐵𝑖

𝑞
𝑖=1 �𝜀𝑡 (20) 

where, 

𝑝, is the order of auto-regressive terms, 

𝑑, is the number of sequential differencing needed to stationarize the time series 

𝑞, is the order of moving average terms, 

𝜑, are the parameters of the auto-regressive part, 

𝜃, are the parameters of the moving average part, 

𝐵, is the lag operator defined as 𝐵𝑖(𝑦𝑡) = 𝑦𝑡−𝑖, and 

[𝜀𝑡], are the error terms series assumed to be independent and identically distributed (i.i.d.) 
random normally distributed variables with mean equal to zero (white noise). 

Dion and Rakha (2006) proposed a real-time adaptive exponential low-pass filtering algorithm 
for travel time estimation and prediction using very small sample AVI data (less than one percent 
of traffic volume) from toll-tag readers. They used toll-tag data from TransGuide system in San 
Antonio to demonstrate the method performance in predicting two minute time intervals. Aside 
from graphs, no other concrete measure of prediction accuracy is reported. 

They assume that travel time is log-normal distributed. This algorithm uses a simple smoothing 
technique to forecast the future average and variance of travel time. The predicted average travel 
time is estimated according to the following equation, 

𝑙𝑛(𝑦�𝑡+𝑘) = �
𝛼. 𝑙𝑛(𝑦𝑡) + (1− 𝛼). 𝑙𝑛(𝑦�𝑡)                    , 𝑘 = 1
𝛼. 𝑙𝑛(𝑦𝑡) + (1 − 𝛼). 𝑙𝑛(𝑦�𝑡+1)               ,𝑘 = 2
𝛼. 𝑙𝑛(𝑦�𝑡+𝑘−2) + (1− 𝛼). 𝑙𝑛(𝑦�𝑡+𝑘−1)  , 𝑘 > 2

 (21) 

where, 

𝑦𝑡, is the observed travel time at time interval 𝑑, 

𝑦�𝑡, is the estimated travel time at time interval 𝑑, 

𝛼, is the smoothing factor to linearly combine log-normal of travel times at time interval 𝑑, and 

𝑘, is the number of time steps ahead for which prediction is being performed. 

Based on the predicted travel time average and variance a range for valid travel time 
observations in the next time interval can be specified. Observations that fall outside this validity 
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window are dismissed as outliers. Essentially, in this method, specification of the validity range 
is performed based on the following four factors: 

• Expected average trip time and trip time variability in future time interval, 

• Number of consecutive intervals without any readings since the last recorded trip time, 

• Number of consecutive data points either above or below the validity range, and 

• Variability in travel times within an analysis interval. 

 

2.3.1.2 State-Space Models 

Chen and Chien (2001) use probe vehicle travel times as measurements in a trivial Kalman filter 
to predict travel times on a freeway path segment. They use historic travel time data to estimate 
transition parameter,𝜙(𝑑), in the system model. 

𝑥(𝑑) = 𝜙(𝑑 − 1).𝑥(𝑑 − 1) + 𝑤(𝑑 − 1) (22) 

𝑧(𝑑) = 𝑥(𝑑) + 𝑣(𝑑) (23) 

where, 

𝜙(𝑑) = 𝑥�𝐻(𝑡+1)
𝑥�𝐻(𝑡)

 (24) 

and, 𝑥�𝐻(𝑑) is the historic travel time associated with time interval 𝑑. 

The CORSIM simulations are the source of their probe travel time measurements. They report 
maximum relative errors of 5 percent in their travel time predictions when probe vehicles 
represent 1% of traffic. Their prediction accuracy does not improve proportionally by increasing 
probe vehicles to 3% of traffic though. 

Barcelo et al. (2009) propose a discrete Kalman filter (DKF) similar to Chen and Chien (2001) to 
estimate and predict travel times on a 40 km long freeway segment of AP-7 Motorway between 
Barcelona and the French border. However, the state transition function adopted in this work is 
set as the ratio of travel time estimates in the last two time intervals. 

𝑥(𝑑) = 𝜙(𝑑 − 1).𝑥(𝑑 − 1) + 𝑤(𝑑 − 1) (25) 

𝑧(𝑑) = 𝑥(𝑑) + 𝑣(𝑑) (26) 

where, 

𝜙(𝑑) = 𝑥�(𝑡)
𝑥�(𝑡−1)

 (27) 
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They used travel time measurements obtained from 6 Bluetooth vehicle re-identification sensors 
on each direction that were deployed anywhere from 4 to over 15 kilometers apart from each 
other. Raw travel time samples first have been filtered and aggregated in one minute time 
intervals. It is these one minute mean travel time estimates that are used in the DKF framework 
to predict travel times. Later, predictions are aggregated and reported in 5 minute time intervals. 
A very high correlation coefficient (𝑅2 = 0.9863) between the observed and predicted time 
series and a prediction MARE equal to 3.54% are reported. It should be noted that long distance 
and intercity nature of the data used to evaluate this method, to a large extent, would explain the 
high quality performance of this method in forecasting travel times. In this study, speeds below 
70 km/h (45mph) are assumed to signal a congested condition which in itself reflects the high 
speed nature of operations on the facility under study. 

2.4 Models Based on Eulerian and Integrated Lagrangean Data 

In cases where both Eulerian data from two endpoints of the segment and travel time (integrated 
Lagrangean) observations between them are available then it is possible to investigate the 
relationship between the two data types. The effects of Eulerian data on travel time can be 
modeled and evaluated using Eulerian data as independent (descriptive) variables and travel time 
data as dependent variable. Essentially, in this setting, travel time can be modeled as an 
implicit/explicit function of the available Eulerian data. 

𝑦 = 𝑓(𝐱) (28) 

When function 𝑓(. ) is not explicitly defined, inductive or statistical methods can be used to draw 
conclusions on the relationship between travel time and other Eulerian data. Non-parameteric 
models such as k-Nearest Neighbor (k-NN) are specifically of this type. On the other hand, when 
function 𝑓(. ) is assumed to take a linear form then linear regression models can be adopted to 
specify the relationship between travel time and the Eulerian data. However, in general, this 
relationship may be non-linear in nature. Therefore, general non-linear functions such as 
Artificial Neural Networks (ANN) may be used for this purpose. 

Downside to these methods is that huge historic data sets are needed to calibrate the associated 
models. The results will highly depend on the extent of the historic data set and its representation 
of recurrent and non-recurrent traffic conditions. Moreover, these models tend to be site 
dependent, a property which limits the transferability of the estimated models. 

2.4.1 Inductive/Statistical (Historic Data Based) Models 

2.4.1.1 k-Nearest Neighbor Methods (k-NN) 

These methods belong to the non-parametric category of travel time prediction methods. This 
implies that no assumption is necessary to be made on error distributions. Even though large 
historic data sets are necessary to make good predictions using k-NN, it is anticipated that over 
time historic data set gets richer and therefore performance of the k-NN method in predicting 
travel times is expected to improve. In this method, given the input vector 𝐱, the following 
inference on the prediction error magnitude is made.  

‖𝐱 − 𝐱𝑘‖ ≤ 𝜀𝑘 ⟹ ‖𝑦 − 𝑦𝑘‖ ≤ 𝛾𝑘           𝑘 = 1, … ,𝐾 (29) 
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where, 

𝐱𝑘, is the 𝑘-th nearest neighbor to input vector  , 

𝜀𝑘, is the measured distance between input vector 𝐱 and its historic 𝑘-th nearest neighbor 𝐱𝑘, 

𝑦𝑘 , is the historic travel time associated with vector 𝐱𝑘, and 

𝛾𝑘 , is the anticipated distance between predicted travel time 𝑦 and its corresponding historic 𝑘-th 
nearest neighbor 𝑦𝑘 . 

Basically, equation (29) states that if input vector, 𝐱, is close enough to its 𝑘-th nearest neighbor, 
𝐱𝑘, then its output, 𝑦, will be close enough to the historic output associated with the 𝑘-th nearest 
neighbor, 𝑦𝑘 . Therefore, output 𝑦  may be written as the sum of the 𝑘 -th nearest neighbor’s 
output, 𝑦𝑘 , and (an unknown) function of the measured distance between input vectors, 𝑔𝑘(𝜀𝑘). 

𝑦 = 𝑦𝑘 + 𝑔𝑘(𝜀𝑘)          𝑘 = 1, … ,𝐾 (30) 

The output, 𝑦, then can be approximated as a function of all 𝐾 nearest neighbor outputs. 

𝑦 ≅ ℎ(𝑦1, 𝑦2, … , 𝑦𝐾) (31) 

Use of average function is a popular choice for function ℎ(. ) in most circumstances. 

𝑦 ≅ ∑ 𝑦𝑘𝐾
𝑘=1 𝐾⁄  (32) 

Handley et al. (1998) reported the first application of k-NN method to forecast travel times on a 
25 mile southbound segment of I-5 in San Diego. The method takes into account weekday versus 
weekend, day of week, time of day, and the 30 second average traffic speeds reported from 116 
loop detectors along this segment as four features based on which similarity between current 
conditions and historic observations are determined. In this application three nearest neighbors 
are selected and the average of their associated travel time is reported as predicted travel time for 
current time interval. This method resulted in a MARE of up to 20% during peak period and up 
to 7% during off-peak period. 

Clark (2003) proposed a k-NN approach to forecast 10 minute time mean speeds from a set of 
loop detectors on the outer loop of London beltway M25. He used a set of four consecutive speed 
observations in the matching process to find 8 nearest neighbors in the historic database. The 
distance metric used in this study is the weighted sum of squares of distances between current 
and historic observations contributed from each parameter included in the analysis domain. 
Results show that speed forecasts will be best if only speeds are included in the process. A best 
MARE of 5% is reported for this method in predicting speeds 10 minutes ahead. However, based 
on the reported results, it seems that a naïve forecast (the current observation) will perform as 
well as the proposed method. 

Robinson and Polak (2005) tested both isolated and combined effects the choice of distance 
metric, value of  , and local estimation measure will have on the performance of k-NN method in 
forecasting an urban arterial travel times. Observed travel time data in this study are obtained 
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using a pair of license plate matching cameras installed at two ends of a one kilometer long 
segment in central London. They found that k-NN method is not too sensitive to the choice of 
distance metric, and that a robust local estimation method is preferable to other methods. Also, 
they found that the optimal value of 𝑘 depends on the size of the historical database. In their case 
study, a k-NN method with 𝑘  equal to 2160 using standardized Euclidean with variance as 
weights for distance measurement and a locally weighted scatter plot smoothing (LOWESS) as 
estimation method was found to perform optimally. This method produced MARE equal to 18% 
in 15 minute travel time forecasts. 

You and Kim (2000) reported on an early application of k-NN method on both freeway and 
arterial segments in Korea. The segments they studied, however, do not seem to reflect any 
serious congestion conditions. Similarly, Bajwa et al. (2005) report on an application of k-NN 
method on data from five long freeway segments in Tokyo metropolitan area. They reported 
RMSEP more than 10% for their applications in congested segments. 

2.4.1.2 Linear Regression Methods 

When function in equation (28) is assumed to be of linear type, then it can be written as follows. 

𝑦 = 𝐴𝐱 (33) 

where, 𝐴 is the coefficients vector and can be estimated using linear regression methods such as 
least squares. 

Kwon et al. (2000) propose a prediction method based on linear regression with stepwise 
variable selection. In their model historic travel time measurements are used as dependent 
variable against which flow and occupancy data from loop detectors are regressed as 
independent variables in a least squares error sense. They used data gathered on a 6.2 mile 
segment of I-880 south of Oakland, California for model evaluation. This data set includes 
measurements from double loop speed stations located at approximately one-third of a mile apart 
as well as probe travel time data (364 trips) from 20 weekday mornings. At 5 minute ahead, this 
linear regression method resulted in 9-15% MARE in travel time predictions. Obviously, this 
model is site specific and should be re-estimated for other segments using their corresponding 
data sets. 

Zhang and Rice (2003) propose a time varying coefficient (TVC) linear model to improve upon a 
naïve predictor based on current speeds at two ends of a freeway segment. The method requires a 
large historic database to calibrate prediction model’s coefficients. They reported on the 
method’s performance on the north-bound direction of I-880 data set which was used by Kwon 
et al. (2000). While using historic dataset provides a slightly more than 10 percent MARE on 
travel time prediction, the TVC model has roughly 6% error in current travel time estimation and 
about 11% error at 30 minute forecasts. 

Chakroborty and Kikuchi (2004) propose a simple linear regression model to estimate auto travel 
times based on measured bus running travel times. The latter is obtained using GPS devices 
installed on buses and is equal to total bus travel time minus times bus spends stopped at stations 
along the segment. The method evaluations on five arterial segments in northern New Castle 
County, Delaware revealed that in the worst case 77% of predictions made were within 10% of 
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floating car measurements. In this study, there were 28 to 30 travel time measurements made at 
each site. 

Liu and Chang, 2006 reported on attempts to calibrate single linear regression models to account 
for increase in travel time due to accumulations on segments with constant and variable capacity 
drops at the downstream. Data obtained from CORSIM micro-simulation runs is used to estimate 
the models. Applying the method in practice is difficult since model calibration requires a large 
historic database and the count data to be used in the method are not accurately available. 

2.4.1.3 Artificial Neural Network (ANN) Methods 

ANN is a general non-linear function approximation system that is inspired by generic functions 
of biological neural networks. The idea behind ANN is that data processing happens at many 
simple data processing units called neurons. Typically, in an ANN these neurons are organized in 
layers in a feed-forward network. Associated with each link in the network is a weight that 
should be determined using a training procedure such as error back-propagation. Input to each 
neuron is the weighted sum of outputs from neurons in the previous layer. Neurons act as a 
switch and depending on the input strength produce an output determined by an activation 
function. Identity, linear, binary step and sigmoid (S-shaped) functions such as logistic and 
hyperbolic tangent functions are among popular activation functions (Fausett, 1994). A feed 
forward ANN with 𝐿 layers can be concisely represented as the following recursive equation. 

𝑦 = 𝑓𝐿�𝐰𝑳−𝟏,𝑳
′ 𝑓𝐿−1�… 𝑓1�𝐰𝟎,𝟏

′ 𝐱 + 𝒃𝟏�… + 𝒃𝑳−𝟏� + 𝒃𝑳� (34) 

where, 

𝐰𝒍,𝒍+𝟏, is the specified weight matrix between neurons in consecutive layers 𝑙, and 𝑙 + 1, 

𝒃𝒍, is the bias vector in neurons of layer 𝑙, and 

𝑓𝑙(. ), is the vector of activation functions belonging to neurons of layer 𝑙. 

Park and Rilett (1998) propose a clustering and artificial neural network method to forecast 
travel times on an urban freeway. They use AVI travel time data on link segments from just over 
one mile to 5 mile long on eastbound US-290. This is part of the automatic tolling system 
TranStar in Houston, Texas. Application of this method resulted in 5 minute travel time forecasts 
with over 8% MARE. Errors nearly doubled in 25 minute forecasts when MARE reached 16%. 

Rilett and Park (2001) report on applying a spectral basis neural network to directly forecast 
freeway corridor travel times. In this method an extra layer is added to the front of ANN which 
implements Fourier transform. The transformed basis functions then will be used in a series of 
hidden layers to build a forecast for corridor travel times. Again, performance of the method on a 
12.8 km segment of eastbound US-290 in Houston is reported. MAPE in 5 minute forecast has 
been about 6% while this same measure for 25 minute ahead forecasts has been more than 15% 
which is not that different from their older results. 

In recent years, ANN methods with transformed input data have become more common place. 
Hamad et al. (2009) used Hilbert-Huang decomposition of the ILD speed signals as input to a 
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speed predicting ANN. They tested this method on I-66 data. Their prediction MARE for 5 to 25 
minute ahead during morning peak hour ranged from 6 to 10 percent. 

2.4.2 Traffic Flow Theory Models 

Traffic flow theory models can be categorized into two major groups. This classification is based 
on the level of detail at which a traffic stream is being modeled. Microscopic models track the 
movements of individual vehicles in traffic. These movements typically fall under two umbrella 
categories: car following and lane changing models. Microscopic models are computationally 
intensive and very difficult to calibrate and verify. 

On the other hand, macroscopic traffic models deal with characteristics of a group of vehicles at 
an aggregate level. Variables such as flow and density are passage rate of vehicles at a cross 
section and their presence rate over a stretch of highway, respectively. Based on definition, these 
variables can be shown to be related through a third variable, namely space mean speed. This 
constitutive relationship along with an assumption on the form of dependence between speed and 
density leads to the so-called fundamental traffic diagram (FTD). 

Macroscopic models are in fact conservation laws expressed in the form of partial differential 
equations (PDE). These models can be solved using exact methods such as method of 
characteristics. In real world applications, in general, it is difficult to obtain the exact solutions. 
Mesoscopic models approximate solutions to these conservation laws by breaking the solution 
domain into a series of smaller sub-domains. Finite difference (FD) methods such as up-winding 
and finite element (FE) methods such as Galerkin are typically used to approximate the evolution 
of traffic variables over time and space. 

2.4.2.1 Microscopic Simulation Models 

Liu et al. (2006) report on an online travel time prediction system customized for Ocean City, 
Maryland. The system receives data from 10 stationary sensors sparsely located along 30 miles 
of US-50 and MD-90 between Salisbury and Ocean City, Maryland. In their study they used a 
calibrated micro-simulation model based on CORSIM software package to predict travel times in 
the system. Forecast traffic volumes at detector locations needed for micro-simulation module 
are determined from a historic database using a nearest neighbor method. No specific measure of 
accuracy regarding predicted travel times is reported. 

2.4.2.2 Mesoscopic Simulation Models 

Waller et al (2007) adopt an ARIMA(3,1,2) to forecast inflows to the freeway segment under 
study, then they use a meso-simulation technique called cell transmission model (CTM) to 
simulate propagation and movements of vehicles inside the segment. Later, based on cumulative 
flow curves at the segment endpoints they are able to forecast travel time. On a 3 mile freeway 
segment, they reported 10 to 23 percent RMSE on travel times predicted 5 minutes ahead using 
this method when compared with travel times obtained from VISSIM micro-simulation. 

2.4.2.3 Hybrid Models 

Zou et al. (2007) propose a method for travel time estimation over long freeway segments. Their 
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method is an extension of Coifman (2002), which makes use of occupancy and speed data from 
stationary detectors located at either end of the segment. They first identify different recurrent 
traffic patterns based on a historic data set. Then for each pattern, they calibrate a parameterized 
model to estimate travel times over the segment assuming that speeds at each detector can be 
extended using a linear relationship to represent the average travel speeds on each half segment. 
Later, based on a piecewise exponential speed-occupancy relationship and the assumption that 
traffic conditions at detectors will propagate with a constant speed within the segment, an 
iterative method for trajectory approximation is proposed. Performance of this method is 
reported in comparison with travel times obtained from vehicle re-identification conducted on 
two days’ worth of video recordings at the endpoints of an over 10 mile long segment of I-70 
between US-40 and I-695 east of Baltimore, Maryland. Results are counter-intuitive in the sense 
that the proposed method resulted in higher errors in free flow and heavy congestion conditions 
rather than in moderately congested periods. In free flow conditions errors up to 8.7% in travel 
time estimation are reported. 

Yu et al. (2008) develop a hybrid model to predict travel times on a 7 mile long segment of US-
50 leading to Ocean City, Maryland. They decompose travel time to a trend and a variation 
component. A fuzzy weighted average of clusters in the historic data base is used to estimate the 
trend term, while a cluster-based artificial neural network calibrated again on historic data base is 
used to predict travel time variations. Performance of the proposed hybrid model is compared 
with results obtained from micro-simulation software CORSIM. An average error of 8.7% in 
predicted travel times throughout the day is reported. 

2.5 State Space Models 

State space models provide a systematic general framework to represent the dynamics of the 
system no matter how complicated the system under investigation is. Additionally, it allows for 
incorporation of various measurements that become available dynamically over time into the 
estimation process. In general, a state space model consists of a system and a measurement 
equation. The idea is in some cases, it is difficult to make direct observations of a system state, 
instead it might be easier to observe and measure its correlated variables. Then the problem is to 
dynamically obtain best estimates of the system state by observing the correlated variables’ 
evolution over time. 

In its simplest form both the system and measurement equations in a state space model are linear. 
The following is an example of a discrete-time linear state space model: 

𝑣𝑛+1 = 𝑀𝑛𝑣𝑛 + 𝑤𝑛 (35) 

𝑦𝑛 = 𝐻𝑛𝑣𝑛 + 𝑢𝑛 (36) 

where, 

𝑣𝑛, is the 𝑁 × 1 column vector of state variables at time step 𝑛 

𝑦𝑛, is the 𝑀 × 1 column vector of measured variables at time step 𝑛 

𝑀𝑛, is the 𝑁 × 𝑁 square transition matrix representing dynamics of the system at time step 𝑛, 
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𝐻𝑛, is the 𝑀 × 𝑁 state to measurement transition matrix of the system at time step 𝑛, 

𝑤𝑛, is the 𝑁 × 1 column vector of state dynamics errors at time step 𝑛, and 

𝑣𝑛, is the M× 1 column vector of measurement errors at time step 𝑛. 

The best linear estimate of a state space model in the least square sense is obtained by Kalman 
filtering (Kalman, 1960 and 1961). 

Nanthawichit et al., 2003 apply standard Kalman filter to the linearized approximation of a 
discretized version of the Payne’s traffic model. The method primarily uses loop detector volume 
and speed measurements to estimate density and speed in a set of cells over time. Measurements 
from probe vehicles also may be included in this method in a very simplistic way. Average probe 
vehicle speed in each cell is regarded as measurement from an imaginary loop detector, if the 
cell in question does not include a loop detector. However, if a loop detector exists in the cell and 
we have two measurements from loop detector and probe vehicle in that cell at the same time 
interval, then the average of two measurements is used as measurement from the cell. Data 
generated by simulation software INTEGRATION has been used to evaluate methodology’s 
accuracy. The suggested combined use of a traffic model along with stationary sensor and probe 
data in a Kalman Filter is shown to improve the travel time predictions by up to 36% compared 
to the autoregressive Kalman filter method proposed by Chen and Chien, 2001 which only uses 
probe data. 

Sun et al., 2004 propose a Monte Carlo method based on a binary switching mode traffic model 
that only distinguishes between free-flow and congestion modes. In this method, first a fixed 
number of mode sample sequences with highest probability are identified, and then on each of 
these mode sample sequences a time varying Kalman filter is applied to estimate continuous 
traffic states (density). The a posteriori estimates of the continuous states are then computed as 
the weighted average of estimates from each Kalman filter. They use real stationary data from 
PeMS as well as simulation results from VISSIM to evaluate their method. They offer visual 
evidence that their proposed method is working well in estimating traffic mode; no quantitative 
measures are given though. 

Chu et al, 2005 assume traffic flow and density are homogeneous on a freeway segment which 
may even include multiple on/off ramps. Also, they assume that all entering and exiting 
boundary flows to and from the segment are measured by means of stationary traffic sensors 
such as loop detectors, and they receive travel time measurements from probe vehicles traversing 
the segment every once in a while. An adaptive Kalman filter is proposed in which density is 
adopted as state variable and travel time measurements are simply related to the average density 
on the segment through a time-varying coefficient. A simple method for estimation of noise 
statistics (mean and variance of errors in system and measurement equations) based on an earlier 
work is given. Data generated using PARAMIC simulation at 30 second intervals on a 0.82 mile 
freeway segment with one on- and one off- ramp is used to evaluate the proposed method. They 
reported 8% mean relative errors in travel time estimates under recurrent morning peak 
conditions with a 5% probe rate, while under non-recurrent conditions (10 minute long incident 
blocking the right lane of freeway) this error measure is increased to about 10%. 
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Wang and Papageorgiou, 2005 report on using an extended Kalman filter to estimate density and 
speed on 500 meter freeway segments every 10 seconds. In their system equation a modified 
Payne-Witham model for dynamic speed estimation is used. Taylor series expansions are used to 
linearize the model equations at each point in time. Flow and speed measurements used in the 
estimation come from stationary traffic sensors at the boundaries of the freeway segment. Traffic 
data is generated using simulation based on the same traffic models as in the Kalman filter. In 
other words, Kalman filter is utilized o estimate traffic states given that we have full knowledge 
of actual traffic dynamics in the system. However, Kalman filter is used as a tool to identify the 
system state in presence of model and measurement noise. In their application, root mean square 
errors of the order 20% and 14% are reported for density and speed estimates, respectively. In 
the case of speed estimates, average absolute RMSE has been about 14 kilometers per hour 
(almost 9mph) on a 5 kilometer stretch of freeway. In a later work, Wang et al., 2007 used 
collected data from a 4.1 kilometer German highway to demonstrate the performance of their 
proposed methodology. In this case, no quantitative error measures for state estimates are 
reported. 

Work et al., 2008 propose an ensemble Kalman filtering (EnKF) approach for highway traffic 
estimation in the presence of both stationary and probe vehicle data. They use a velocity based 
cell-transmission model (CTM-v) with a Greenshield’s type fundamental diagram which makes 
it possible to work directly with measured speeds. They ran tests on a simulation model 
calibrated for I-880. This method resulted in 25% average relative error on speed estimates at 5% 
probe penetration rate. 

Herrera and Bayen, 2009 use cell-transmission model (CTM) with a triangular fundamental 
diagram to estimate density given a combination of boundary and probe measurements. Newton 
relaxation and discrete Kalman filter are two methods that they used to estimate traffic 
conditions. They are using data collected in Next Generation SIMulation (NGSIM) project on 
US highway 101 in California, as well as GPS probe data from Mobile Century data collection 
effort on interstate 880 in California. 

Claudel and Bayen, 2008 proposed a method based on viability theory in optimal control to 
estimate a lower and upper bound for the number of vehicles that are initially present on the road 
segment under investigation based on both stationary and probe data. Then, using the 
conservation of vehicles principle method is capable of estimating a range for travel time 
between the two end points of the segment. This method does not take into consideration 
presence of on and off ramps between the two end points. They tested their proposed method on 
US-101 dataset from NGSIM and I-880 from Mobile Century data collection effort. A mean 
relative error higher than 8% on travel time estimates is reported using this method. 

Mihaylova and Boel, 2004 use a particle filter (PF) to estimate traffic variables from a nonlinear 
state-space model. PF is essentially a Bayesian recursive estimation approach analogous to a 
Monte Carlo simulation. Therefore, PF is computationally expensive but is most accurate in the 
case of nonlinear state-space models. Their numerical experiments on an undisclosed 0.5 
kilometer long four lane freeway segment reported errors up to 10% in speed estimates. 

Table 1 summarizes the distinctive features of relevant traffic state estimation studies reported in 
the literature which are particularly based on state-space models. Based on this table a few points 
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should be noted. First, not many studies reported on the accuracy of travel time predictions. 
Second, as expected, time interval size plays a significant role in the accuracy of estimates. 
Third, travel time data has never been systematically incorporated into the estimation process. 
The only reported work that directly combines probe data as travel time with stationary data 
(Chu et al. 2005) does so through a simplifying assumption that travel time is an adaptive 
coefficient of density in the segment under study. 
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Table 1. Summary features of traffic speed/travel time estimation studies using state-space models. 

Author(s) Year Traffic 
Model 

Measurement(s) Estimation 
Method 

Data Source Facility Type Time 
Interval 

Estimation 
Variable 

Prediction 
Variable 

Accuracy 

Chen, Chien 2001  -Probe 
(travel time) 

Auto-
Regressive 
Kalman 

CORSIM Freeway 
(I-80 in NJ) 

5 min Travel 
Time 

Travel Time 
(5 min) 

MARE ~2% @ 1-
3% probe 

Treiber, 
Helbing 

2002  -Stationary (flow, 
speed, density) 

Adaptive 
Smoothing 

Double ILD Freeway 
(A8, A9, A5, 
Germany) 

1 min Density Density 
(20 min) 

Visual 

Nanthawichit 
et al. 

2003 Payne 
(linearized, 
and 
discretized) 

-Stationary 
(flow, speed) 
-Probe 
(speed) 
-Combined 

Kalman Filter INTEGRATION Freeway 
(Yokohane, 
Japan) 

10 sec 
est., 
 3 min 
pred. 

Speed -Speed 
-Travel 
Time 

MARE<3-26% 
MARE <4% @ 
3% probe 

Mihaylova, 
Boel 

2004  -Stationary 
(flow, speed, 
density) 

Particle Filter METANET  10 sec Flow 
Speed 
Density 

  

Sun et al. 2004 SMM  -Stationary 
(flow, density) 

Mixture 
Kalman Filter 

PeMS (ILD) 
VISSIM 

Freeway 
(I-210 in CA) 

2 sec Speed  Visual 

Chu et al. 2005 LWR 
(discretized) 

-Stationary 
(flow, density) 
-Probe 
(travel time) 
-Combined 

Adaptive 
Kalman Filter 

PARAMICS Freeway 
(I-405 in CA) 

30 sec   MARE ~10% @ 
5% probe 

Wang, 
Papageorgiou 

2005 Modified 
PW 
(linearized) 

-Stationary 
(flow, speed) 

Extended 
Kalman Filter 

Kalman Filter  10 sec Density 
Speed 

 MARE <19-21% 
MARE ~14% 

Wang, 
Papageorgiou 

2007 Modified 
PW 
(linearized) 

-Stationary 
(flow, speed) 

Extended 
Kalman Filter 

ILD Freeway 
(A92, 
Germany) 

10 sec Flow 
Speed 
Density 

 Visual 

Herrera, 
Bayen 

2008 CTM 
(triangular 
flux) 

-Stationary 
(density) 
-Probe 
(position, speed) 

-Newton 
Relaxation 
-Kalman 
Filter 

NGSIM 
Mobile Century 

Freeway (US-
101, I-880 in 
CA) 
 

1.2 sec 
8 sec 

Density  ? 

Claudel, 
Bayen 

2008 Moskowitz 
HJ PDE 

-Stationary 
(density) 
-Probe 
(position, speed) 

LP NGSIM 
Mobile Century 
PeMS 

Freeway (US-
101, I-880 in 
CA) 
 

 Travel 
Time 

 MARE >8% @ 
5% probe 

Work et al. 2008 CTM-v -Stationary 
(speed) 
-Probe 
(position, speed) 

Ensemble 
Kalman Filter 

PARAMICS 
Mobile Century 

Freeway (I-
880 in CA) 

2 sec Speed  MARE 25% @ 
5% probe 

Barcelo et al. 2009  -Probe 
(travel time) 

Auto-
Regressive 
Kalman 

Pilot project Freeway (AP-
7 in Spain) 

5 min Travel 
Time 

Travel Time MARE 3.5% 
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2.6 Bayesian Filter for Traffic State Estimation and Prediction 

Traffic state estimation and prediction are important for traffic surveillance and control. Travel 
time can be estimated or predicted afterward based on traffic state values (Chen et al. 2012, 
Chen, Rakha and Sadek 2011).  

Since traffic states are usually not measured everywhere and measurement errors exist, traffic 
state estimation is necessary when dealing with local and noisy sensing data (Wang and 
Papageorgiou 2005, Wang, Papageorgiou and Messmer 2008). Alternatively, in the case of 
traffic state prediction, current traffic measurement data are used to forecast future traffic flow 
variables. Recently, the implementation of various traffic macroscopic models within recursive 
Bayesian filter approaches has been widely used for both traffic state estimation and prediction 
problems (Work. et al. 2008, Mihaylova, Boel and Hegyi 2007, Sau et al. 2007, Wang and 
Papageorgiou 2005, Wang et al. 2008, Cheng, Qiu and Ran 2006, Work et al. 2010). For each 
time interval, both the time update (prediction) and measurement update (estimation) processes 
are included in this framework. The sequence of the two processes within a single time interval 
categorizes the problem as data estimation or prediction. Once new measurement data are 
available, they are used to adjust the prior predicted value and obtain the estimation. Conversely, 
prediction is calculated by implementing the estimated value in the time update equation.  

A framework with different combinations of macroscopic traffic models and Bayesian filtering 
technologies has been used to estimate or predict traffic state variables in recent years (Work. et 
al. 2008, Mihaylova et al. 2007, Sau et al. 2007, Wang and Papageorgiou 2005, Wang et al. 
2008, Cheng et al. 2006, Work et al. 2010). There are two main advantages to this framework. 
Within the time update process, the relationship of traffic parameters across adjacent time 
intervals is accurately characterized by macroscopic traffic models. Apart from this, the recursive 
framework ensures that traffic state data are efficiently calculated using only data from previous 
states, not the entire history (Ristic 2004). 

To construct this recursive Bayesian filter framework, a time series equation is needed to predict 
future traffic variables (i.e., flow [q], space mean speed [u], and density [k]) using current 
measured data. A macroscopic traffic system can be used to track the temporal and spatial 
dynamic traffic flow behavior along a freeway by constructing a time series traffic variable 
update equation (Wang and Papageorgiou 2005). Computing the traffic stream flow as the 
product of the traffic stream space mean speed and density reduces the problem to two 
independent variables that characterize the traffic stream state. If we assume that a fundamental 
diagram exists, then there is a unique relationship between traffic stream density and speed. 
Consequently, a time series equation used to predict a single traffic stream variable (the 
numerical solution of a first-order partial differential equation [PDE]) is required to estimate the 
three traffic stream variables. This is classified as a first-order macroscopic traffic model. 
Alternatively, if the fundamental diagram is not strictly enforced, a second equation is needed for 
the second traffic flow variable. The model is considered a second-order macroscopic traffic 
model by predicting two traffic variables (the numerical solution of two first-order PDEs). 

Instead of a data-driven statistical approach, the time series equation derived from macroscopic 
traffic models has the advantage of describing the temporal and spatial dynamics of traffic flow 
behavior along a freeway based on physical principles. It has strong robustness and is easy to 
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implement at various freeway locations. For instance, a modeling algorithm proposed in 
(Mihaylova et al. 2007) uses sending and receiving functions to represent the traffic perturbation 
behavior of propagating forward and backward. Both traffic flow and speed are used in the state 
variable to construct a second-order macroscopic model. A similar second-order macroscopic 
model was proposed in (Cheng et al. 2006) using the concept of handoff, which is a mechanism 
that transfers an ongoing call from one cell to another when a cell phone user moves through the 
coverage area of a cellular system. Sending/receiving functions represent the vehicles that intend 
to leave/enter a segment. A more popular approach with which to derive time series equations is 
the traditional Lighthill-Whitham-Richards (LWR) model, which ensures that vehicle 
conservation is maintained on the road. For instance, the conservation equation in (Sau et al. 
2007) is directly derived from LWR, and the change of section traffic flow for each time interval 
is constrained by the freeway section flow supply and demand. Both freeway density and flow 
volume are the state variables and are measured using loop detectors to estimate traffic state and 
then predict travel time. The conservation equation is also included in a second-order 
macroscopic traffic flow model and is used in the prediction process computation for traffic state 
estimation in (Wang and Papageorgiou 2005, Wang et al. 2008). Loop detector data are also used 
for measuring the state variables of traffic flow and speed. Within the application of using speed 
data from mobile devices to estimate the freeway traffic state, a velocity cell transmission model 
(CTM-v) is derived from the LWR by replacing the traffic flow and density with traffic speed 
based on Greenshields’ fundamental diagram (Work. et al. 2008). Follow-up research 
demonstrates that the solution of the new PDE is equivalent to the LWR PDE under a quadratic 
flux function (Work et al. 2010).  

After obtaining the time series equation, a recursive Bayesian approach is used to incorporate the 
measurement data to update state variables from the time series equation. The classical KF is the 
easiest way to incorporate the error between state prediction and measurement data for 
estimation purposes. However, the classical KF works ideally only for linear systems with 
Gaussian noise. Since most of the derived time series equations are characterized by nonlinear 
behavior, an extended Kalman filter (EKF) is widely used for traffic state estimation (Wang and 
Papageorgiou 2005, Wang et al. 2008). EKF is a revised classical KF with the calculation of 
Jacobian expression. This method has the same advantage as the classical method of propagating 
the error covariance matrix but can deal with a nonlinear system using Tyler estimation. 
However, it is difficult to compute the Jacobian expression for many nonlinear time series 
equations. By overcoming the defect of Jacobian computation and producing ideal accuracy for a 
nonlinear estimation, Ensemble Kalman filter (EnKF) enables the use of nonlinear evolution 
equation while exploiting the linear observation equation. EnKF uses Monte Carlo integrations 
to maintain the nonlinearity of error statistics. It has the same feature as KF that propagates 
errors by Kalman gain (Work. et al. 2008) and provides the average estimation or prediction 
output. However, it cannot deal with the model of nonlinear measurement equation and cannot 
output reliability state information. Regarding these problems, a powerful approach named a 
particle filter is implemented, which is applicable for any nonlinear system of equations and has 
no requirement for the distribution of the system noise (Mihaylova et al. 2007). A particle filter 
provides another benefit in that it delivers the estimation and prediction results as a distribution 
instead of just one value (Ristic 2004).  

Although many studies have been conducted using different combinations of macroscopic traffic 
models and filtering techniques, these approaches suffer from a number of deficiencies. First, 
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simple traffic stream models may not accurately replicate field-observed traffic stream 
characteristics. For instance, the Greenshields model does not provide sufficient degrees of 
freedom to replicate field observations (Rakha and Crowther 2002). As a result, the traffic state 
time series equation derived from simple traffic stream models usually results in lower 
estimation or prediction accuracy. On the other hand, a complex model (e.g., second-order 
macroscopic model) has many parameters; thus, the calibration of the model becomes a 
challenge (Cheng et al. 2006, Mihaylova et al. 2007, Wang and Papageorgiou 2005, Wang et al. 
2008). Third, although deriving the time series equation from the LWR based on vehicle 
conservation law is a promising approach, no underlying traffic stream models other than the 
Greenshields model have been tested or evaluated. Furthermore, although these methods can be 
used for traffic state prediction in terms of the features of recursive Bayesian filters, few 
prediction results are presented or compared. Since predicting future traffic state data has many 
realistic applications for ramp metering, incident detection, and travel information broadcasting 
(Sau et al. 2007), it is necessary to conduct research about traffic state prediction. 

A particle filter approach was proposed in order to solve the mentioned problems of predicting 
traffic state (Chen et al. 2011, Chen et al. 2012). This approach combines a more realistic traffic 
stream model – Van Aerde model with the traditional LWR flow continuity equation to derive a 
new time series equation to describe the spatial and temporal relationship of traffic speed on a 
freeway stretch. After implementing the speed equation in the particle filter framework, a multi-
step prediction approach was proposed and tested, and was demonstrated to produce accurate 
traffic state predictions with less than 5% errors for a 5-minute prediction horizon (Chen et al. 
2011). The effect of ramp flow and a more realistic boundary condition are considered in the 
following research and the testing results indicate that the proposed approach produces half of 
the prediction errors as compared to the LWR formulation in terms of traffic speed and density 
(Chen et al. 2012).  

The above approaches utilize the macroscopic traffic model and the Bayesian filter to increase 
the accuracy of predicting traffic state in the near future. However, the accuracy degrades rapidly 
with the increase in the prediction time span (Chen et al. 2012, Chen et al. 2011). It should be 
noted that traffic state in the near future usually cannot provide enough information to cover the 
entire trip, especially for long trips. For instance, in the case of a 100-mile trip, departures at the 
current time would still be traveling 1 hour in the future even under free-flow traffic conditions. 
For this case, the traffic state for the following 1 hour or more should be predicted in order to 
compute dynamic travel times. An alternative to solving this problem is to use historical data. 
The historical data set provides a pool of past experienced traffic patterns which can be used to 
predict future traffic states. The key issue is determining the similar historical traffic patterns to 
match up with the changeable real-time traffic information.  

2.7 Dynamic Travel Time Prediction 

Travel time prediction is an essential part of an Advanced Traffic Management System (ATMS) 
and Advanced Traveler Information System (ATIS). The Federal Highway Administration 
(FHWA) encourages all Traffic Management Centers (TMCs) to post travel time and incident 
information, which not only provides useful information to motorists but also assists them in 
planning their route choices. This planning can cause a small number of drivers to divert away 
from the congested highway, thus providing critical additional capacity and assisting in the 
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management of congestion (Chu 2011). 

Various traffic sensing technologies have been used to collect traffic data for use in computing 
travel times, including point-to-point travel time collection (e.g., license plate recognition 
systems, automatic vehicle identification systems, mobile, Bluetooth, probe vehicle, etc.) and 
station-based traffic state measuring devices (loop detector, video camera, remote traffic 
microwave sensor, etc.). Private companies such as INRIX integrate different sources of 
measured data to provide section-based traffic state data (speed, average travel time), which is 
used in our study to develop algorithms for predicting travel times. The benefit of using section-
based traffic state data is that travel time can be easily calculated from traffic state data. More 
importantly, the section-based data provide the flexibility for scalable applications on traffic 
networks. 

By providing section-based traffic state data, there are two approaches to compute travel time 
depending on the trip experience (Tu 2008, Mazare et al. 2012). Dynamic travel time is the 
actual, realized travel time that a vehicle could experience during a trip. If a vehicle leaves its 
origin at the current time, the roadway speed will not only change across space but also across 
time during the entire trip. Consequently, dynamic travel time can be obtained by using a 
prediction algorithm to compute the speed evolution in future time steps. Instantaneous travel 
time is the other approach available to compute travel times without the consideration of speed 
evolution across time. It is usually computed using the current speed along the entire roadway; in 
other words, the speed field is assumed to remain constant in time. The instantaneous travel time 
is close to the dynamic travel time when the roadway speed does not change significantly across 
time axles during the trip. However, this approach may deviate substantially from the actual, 
experienced travel time under transient states during which congestion is forming or dissipating 
during a trip (Chen and Rakha 2012).  

During past decades, many studies have been conducted to predict travel times. Some of the 
reviews of different methods can be found in earlier publications (Du, Peeta and Kim 2012, 
Myung et al. 2011, Lint, Hoogendoorn and Zuylen 2005, Vlahogianni, Golias and Karlaftis 
2004). According to the manner of modeling, those methods can be classified into time series 
models, including: Kalman filter (Fei, Lu and Liu 2011, Yang 2005), Auto-Regressive Integrated 
Moving Average (ARIMA) models (Xia, Chen and Huang 2011, Xia and Chen 2009, Yang 
2005) and data-driven methods, such as neural networks (Hinsbergen et al. 2011, Lint et al. 
2005), support vector regression (SVR) (Vanajakshi and Rilett 2007, Wu, Ho and Lee 2004) and 
K-Nearest Neighbor (KNN) (Qiao, Haghani and Hamedi 2012, Myung et al. 2011, Bustillos and 
Chiu 2011) models. These techniques are implemented through direct and indirect procedures to 
predict travel times using different types of state variables. Travel time is directly used as the 
state variable in model-based or data-driven methods to predict travel times. Indirect procedures 
are performed by using other variables (such as traffic speed, density, flow, occupancy, etc.) as 
the state variable to predict traffic status, and then future travel time can be calculated based on 
the transition to predicted traffic status.  

Time series models construct the time series relationship of travel time or traffic state, and then 
current and/or past traffic data are used in the constructed models to predict travel times in the 
next time interval (Yang, Liu and You 2010). Kalman filter is a popular method for data 
estimation and tracking, in which time update and measurement update processes are included. A 
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time series equation is used to predict state variables and then state values are corrected 
according to the new measurement data. The main advantage of  KF is that the recursive 
framework ensures that traffic data is efficiently updated using only data from previous states 
and not the entire history (Chen et al. 2012). Kalman filter methods were proposed to predict 
travel times using Global Positioning System (GPS) information and probe vehicle data (Yang 
2005, Nanthawichit, Nakatsuji and Suzuki 2003). The state transient parameter in the time series 
equation is defined from average historical data to calculate future travel times. A similar idea 
was used in the Bayesian dynamic linear model for real-time short-term travel time prediction 
(Fei et al. 2011). The system noise can be adjusted for unforeseen events (incidents, accidents, or 
bad weather) and integrated into the recursive Bayesian filter framework to quantify random 
variations on travel times. The experiment results based on loop detector data from a segment of 
I-66 demonstrates that the proposed method produces higher prediction accuracy under both 
recurrent and non-recurrent traffic conditions. However, in these methods a problem exists in 
that the travel time in the previous time interval is needed to calculate the future travel time. For 
real-time applications, the travel time is usually greater than the time interval step size. Hence, 
the actual travel time from the previous time interval is not available to apply in the algorithms 
used to predict travel times for the next time interval. 

A seasonal ARIMA model was proposed to quantify the seasonal recurrent pattern of traffic 
conditions (occupancy) (Xia et al. 2011, Xia and Chen 2009). Moreover, an embedded adaptive 
Kalman filter was developed in order to update the occupancy estimate in real-time using new 
traffic volume measurements. Consequently, multi-step look-ahead occupancy information is 
estimated to obtain a data matrix representing the temporal-spatial traffic conditions for the 
future trip. Since travel time cannot be directly computed through traffic conditions (occupancy), 
future traffic speed can be calculated using occupancy data by assuming an average vehicle 
length and using a constant conversion factor known as the g-factor in the literature. 
Consequently, dynamic freeway corridor travel times are predicted with the consideration of 
traffic state evolution along the corridor. However, this approach may be difficult to implement 
since the described recurrent pattern of traffic conditions may not be found everywhere.  

Data-driven methods usually predict travel times using a large amount of historical traffic data. 
Time series models are not specified in the data-driven methods, considering the complex 
randomness of traffic systems. Neural networks can be trained from historical data to discover 
hidden dependencies which can be used for predicting future states. A state-space neural network 
(SSNN) method was proposed to predict freeway travel times for missing data (Lint et al. 2005). 
The missing data problem was tackled by simple imputation schemes, such as exponential 
forecasts and spatial interpolation. Travel time was the direct state variable used for the training 
process and the experiment results demonstrated that the SSNN methods produced accurate 
travel time predictions on inductive loop detector data. Supported vector machine (SVM) is a 
successor to artificial neural network (ANN); it  has greater generalization ability and is superior 
to the empirical risk minimization principle as adopted in ANN (Wu et al. 2004). The application 
of SVM to time series forecasting is called support vector regression (SVR). The SVR predictor 
was demonstrated to perform well for travel time prediction. The point-to-point travel time is 
usually used as the input to ANNs and SVRs. However, both methods require long training 
processes and are nontransferable to other sites (Myung et al. 2011). 

The KNN method can be used to find several candidate sequences from historical data by 
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matching current with short past data sequences. Travel time and occupancy sequences were 
used to predict dynamic travel times using the KNN method with combined data from vehicle 
detectors and automatic toll collection systems (Myung et al. 2011). The occupancy was used 
since travel time sequence was collected for the recent past time intervals. The results from the 
case study demonstrated the improvement of prediction accuracy by combining two types of 
sequences for the matching process. Moreover, a KNN method was proposed by selecting 
candidates through the Euclidean distance and data trend measures to predict freeway travel 
times under different weather conditions (Qiao et al. 2012). Unlike ANNs and SVRs, KNN 
methods are easy to implement at different sites without data training required.  

In summary, existing methods are either insufficient or have limitations in predicting dynamic 
travel times for departures at the current time or sometime into the future. The proposed 
approach used in this study is a data-driven method, yet it outperforms the previous methods by 
fully utilizing the relationship between traffic states and travel times. Moreover, unlike previous 
studies using travel time sequences as input, the proposed method uses temporal-spatial traffic 
data to match traffic patterns between real-time and historical data. Many advanced pattern 
matching techniques can be implemented in the proposed approach to find similar historical 
traffic patterns more efficiently and accurately, and obtain better travel time prediction results. 

3 Methodology of Traffic Estimation 

In this chapter solution methods for the proposed problem and its variants are presented. The 
proposed approach is based on the notion that in order to make quality predictions for the future 
of a system first we must have a good estimate of current state of the system and then utilize 
means to predict the system evolution in the future. Therefore, the work horse of such estimation 
and prediction framework is an accurate traffic model that is capable of reproducing any 
significant changes in traffic stream. The next issue that has to be addressed is that the best use 
of available data has to be made. Incorporating some traffic data types such as speed into 
estimation and prediction framework is straight-forward, while no systematic approach to fuse 
travel time data is currently available. Last, but not least, piece of the proposed approach has to 
do with drawing the best estimates out of the model and available data in presence of modeling 
and measurement errors and other real life constraints such as missing, intermittent and or out of 
sequence measurements. 

In this chapter, first a well-known first order continuum traffic flow model is adopted to 
represent the dynamics of the system. An equivalent form of this model in terms of speed is 
derived. This model provides a theoretical framework to understand and analyze traffic processes 
on a variety of roadway facilities. Also, this model is widely used in an array of traffic operation 
and control applications worldwide. Therefore, it is essential to have both efficient and accurate 
solution methods for this model. A finite difference and a finite element method for solving the 
velocity based equivalent of the first-order continuum traffic flow model numerically are 
proposed. 

Second, some desirable properties of travel time which are adopted in this study are briefly 
presented. Enforcing these properties on the estimates defines a feasible solution region for travel 
time partial derivatives. Then, interpreting travel time as distance to a boundary in space-time 
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domain we introduce a framework to relate integrated lagrangean (travel time) data and local 
speeds. Relevant derivations are presented. Finite difference schemes to solve for travel times 
given speeds are introduced. 

Finally, to derive the optimal estimates from the resulting state space model in presence of errors 
in modeling and measurements we propose optimal filtering approach. Kalman filtering (H2), 
H∞  and their extensions for nonlinear models and measurement equations are introduced. In 
particular, extended Kalman filtering (EKF), unscented Kalman filtering (UKF) and particle 
filtering (PF) and their H∞ equivalents are discussed. Methods to address missing and out of 
sequence measurements are introduced. 

3.1 Traffic Model (LWR-v) 

Continuum traffic flow theory is a powerful tool to describe the evolution of macroscopic traffic 
parameters over time and space. This is in contrast to microscopic models of traffic flow which 
generally require meticulous handling of individual vehicles movements in the traffic stream. 
The most basic continuum traffic flow theory builds on two basic physical principles that is 
conservation of vehicles and the fundamental relationship between flow rate, density and speed. 
Conservation principle states that no vehicle is added or lost in traffic at any time other than the 
ones that enter or exit through the boundaries. This basic continuum theory was first proposed by 
Lighthill and Whitham (1955) and Richards (1956). Despite its simplicity, and therefore its 
inherent limitations (Daganzo, 1997), the so called kinematic wave theory or LWR model 
provides a good approximation to the dynamics of traffic flow which has proved to be useful for 
most practical purposes. 

Even though our ability to directly measure different traffic parameters has dramatically 
increased over the years, the measurements are still widely different in terms of their accuracy 
and reliability. For instance, flow rate and density both can be obtained as a result of simple 
counting processes performed at a single point or a pair of points, respectively. However, it is 
ironic that in practice, large inconsistencies between counts in consecutive stations (with no exit 
or entrance in between) exist. In the case of loop detectors this “drift” phenomenon is well 
known. In addition, at a macroscopic level, definition of density is a bit ambiguous in the sense 
that the length over which concentration of vehicles would affect a driver’s behavior under 
normal conditions is not specified. In contrast, speed measurements which theoretically are 
expected to be more difficult to obtain have proved to be a far more reliable source of traffic 
data. That is why, in this study, we focus on a speed-based equivalent of the LWR model. 

The rest of this section is organized as follows. First, we briefly present the derivation of the 
first-order speed based continuum traffic flow model based on LWR model. Second, for the sake 
of completion, we present the speed based finite difference method equivalent to cell-
transmission model presented by Work et al. (2008). Third, a finite element solution method for 
the speed based LWR model is derived. 

3.1.1 LWR-v DERIVATION 

The first-order continuum traffic flow model proposed by Lighthill, Whitham and Richards 
(LWR) is considered in its differential from: 
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∂k(x,t)
∂t

+ ∂q(x,t)
∂x

= 0 (1) 

where, 

k(x, t) is the traffic density at time t and at point x along the highway, and 

q(x, t) is the traffic flow rate at time t and at point x along the highway. 

This is the conservation law which essentially implies that no vehicle is born or lost along 
the highway. This equation is originally borrowed from hydrodynamics but has found 
widespread use in modeling vehicular traffic flow despite obvious differences between the 
two fields. In order to solve this equation, it is assumed that flow is a function of density 
and therefore we can write: 

q(x, t) = Q(k(x, t)) (2) 

where, Q(. ) is the flux function or what is called the fundamental diagram in traffic flow 
theory. One of the most important flux functions is the one proposed by Greenshields 
(1935) which suggests that a linear relationship exists between speed, v and density k: 

v
vf

+ k
kj

= 1 (3) 

where, vf, is the free flow speed, and kj is the jam density of highway under prevailing 
conditions. 

 

Figure 3. Greenshield’s speed-flow-density relationships. 
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Figure 3 depicts the idealized relationship between pairs of traffic parameters under stationary 
conditions as hypothesized by Greenshields (1935). Also, under stationary traffic conditions, by 
definition the following relationship between flow, speed and density holds: 

q = k v (4) 

Thus plugging the value of density from (3) into (4), we obtain the following quadratic relation 
between flow and speed: 

q = kj(v − v2

vf
) (5) 

Likewise, plugging the value of density from (3) and flow from (5) into equation (1), we obtain 
the speed-based LWR model (LWR-v): 

∂v
∂t

+ ∂R(v)
∂x

= 0 (6) 

where the new flux function is given by 

R(v) = v2 − vf v (7) 

Bardos et al. (1979) have shown that partial differential equations of type (6) with the initial 
condition (8) and the weak boundary conditions (9) and (10) in space ]a, b[ × ]0, T[ are well-
posed. 

v(x, 0) = v0(x)        ,∀x ∈ ]a, b[ (8) 

�
v(a, t) = va(t) or                                                                                     
R′�v(a, t)� ≤ 0 and R′�va(t)� ≤ 0 or                                                
R′�v(a, t)� ≤ 0 and R′�va(t)� ≥ 0 and R(v(a, t)) ≥ R(�va(t)�

 (9) 

�
v(b, t) = vb(t) or                                                                                     
R′�v(b, t)� ≥ 0 and R′�vb(t)� ≥ 0 or                                                
R′�v(b, t)� ≥ 0 and R′�vb(t)� ≤ 0 and R(v(b, t)) ≥ R(�vb(t)�

 (10) 

In the following two sections, a finite difference and a finite element method are proposed to 
numerically solve LWR-v model (6-10). 

3.1.2 FINITE DIFFERENCE METHOD (FDM) 

In practice, the LWR-v model derived in the previous section has to be approximated. In this 
section a finite difference approximation to LWR-v model proposed by Work et al. (2008) is 
briefly presented. This solution is in fact a velocity cell transmission model (CTM-v) similar to 
the ordinary CTM proposed by Daganzo (1994) which provides an approximate solution to LWR 
model. CTM-v follows a Godunov numerical scheme in which both time and space dimensions 
are discretized. 
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First, time is divided into N time intervals {tn|n = 0,1, … , N} each of length ∆t = T/N and space 
is divided into M space cells {xi|i = 0,1, … , M} each of length ∆x = (b − a)/M. To each space 
cell xi at time interval tn, a discrete average speed vni  is assigned. Speed evolution at each space 
cell over time is given by, 

vn+1i = vni −
∆t
∆x

(g�vni , vni+1� − g�vni−1, vni �) (11) 

where the flow g is defined as, 

g(v1, v2) =

⎩
⎨

⎧
R(v2)                         if v1 ≤ v2 ≤ vc 
R(vc)                         if v1 ≤ vc ≤ v2
R(v1)                         if vc ≤ v1 ≤ v2
max (R(v1), R(v2))      if v1 ≥ v2   

 (12) 

where vc is the minimum of the convex flux function (7). So, in the case of Greenshield’s flux 
(7), we will have vc = vmax

2
. 

To ensure stability of the numerical discretization method, the length of both spatial and time 
steps must meet the Courant-Friedrichs-Lewy (CFL) condition: 

�∆t
∆x

max (R′(v))� ≤ 1 (13) 

The CFL condition suggests that no entering vehicle at the beginning of a time interval can exit 
the cell in that same time interval. Thus, in the case of Greenshield’s flux function, this condition 
translates to 

∆t × vmax ≤ ∆x (14) 

3.1.3 FINITE ELEMENT METHOD (FEM) 

In this section a finite element solution method to the LWR-v PDE on a homogeneous highway 
is derived. Elements used for this purpose are one-dimensional simplex elements and 
approximation inside the element is performed using a linear equation. For a given element (e) 
extending from xi  to xj , where j = i + 1  and with the length l(e) = xj − xi , the interpolation 
function can be written as 

v(e)(x) = �1 − x−xi
l(e)

x−xi
l(e) � �

vi
vj� = [N(x)]. v�⃗ (e) (15) 

where, [N(x)] denotes the vector of shape functions, and v�⃗ (e) is the vector of unknown nodal 
speeds in an element. Applying the Galerkin’s method to the PDE leads to solving the following 
set of non-linear simultaneous equations. It should be noted that α = vj − vi is the difference of 
unknown speeds at the two end nodes of a given one-dimensional element. 
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�
2�l(e) + 2α∆t�+ 3vmax∆t �l(e) + 2α∆t� − 3vmax∆t
�l(e) + 2α∆t�+ 3vmax∆t 2�l(e) + 2α∆t� − 3vmax∆t

� . v�⃗ t+∆t
(e) = �

l(e) �2vi(t) + vj(t)�

l(e) �vi(t) + 2vj(t)�
� (16) 

This represents the element equations where the left hand side matrix is the element 
characteristic matrix ��S(e)�� and the right hand side vector is the element characteristic vector 
�P��⃗ (e)�. This would allow us to rewrite (16) in the following standard form 

�S(e)�. v�⃗ (e) = P��⃗ (e) (17) 

Therefore, the system equations can be assembled using element equations for each node in the 
highway system 

[S]. v�⃗ = P��⃗  (18) 

where, 

[S] = ∑ �S(e)�E
e=1   (19) 

P��⃗ = ∑ P��⃗ (e)E
e=1   (20) 

However, it should be noted that these summations do not indicate the usual algebraic operation 
they are commonly used for, but they indicate assembly over finite elements. Essentially, in the 
assemblage process of system matrix and system vector from element matrices and vectors, care 
should be exercised to satisfy all the compatibility requirements at the element nodes. Boundary 
conditions also may be incorporated into set of system equations (18) before solving them (Rao, 
2002). Newton-Raphson method may be used to solve the non-linear set of simultaneous 
equations (18). The following algorithm may be used iteratively at every time interval n to solve 
for the vector of nodal speeds, v�⃗ n+1, in the next time interval. 

Step 0 (initialization): Start with an initial solution for the next time step, v�⃗ n+1
(0) , and evaluate the 

initial system function vector, F�⃗ n+1
(0) = �Sn+1

(0) �. v�⃗ n+1
(0) − P��⃗n+1. Set the iteration counterj = 0. Set the 

convergence criteria, ε. 

Step 1 (stopping criterion): If �F�⃗ n+1
(j) � ≤ ε  then stop. Accept v�⃗ n+1

(j)  as the solution. Otherwise, 
continue. 

Step 2 (function Jacobian evaluation): Evaluate the Jacobian, [Jn+1
(j) ], of F�⃗ n+1

(j)  with respect to 
v�⃗ n+1

(j) . 

�Jn+1
(j) � = [∂F

��⃗ n+1
(j)

∂v��⃗ n+1
(j) ] (21) 

Step 3 (linearized approximation): Solve the following linearized approximation to the system 
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function vector to find the vector of speed changes, ∆v����⃗ n+1
(j) . 

�Jn+1
(j) � .∆v����⃗ n+1

(j) = −F�⃗ n+1
(j)  (22) 

Set modified vector of nodal speeds as v�⃗ n+1
(j+1) = v�⃗ n+1

(j) + ∆v����⃗ n+1
(j) . Set j = j + 1. 

Step 4 (function evaluation): Evaluate the system function vector, F�⃗ n+1
(j) = �Sn+1

(j) �. v�⃗ n+1
(j) − P��⃗n+1. 

Go to step 1. 

3.2 Integrated Lagrangean (Travel Time) Data Representation 

Given the fact that travel time of a vehicle is the line integral of inverses of its speeds along its 
trajectory, it is clear that either we should have the trajectory or the inverse problem of finding 
speeds based on travel time is in fact under-determined. 

τ = ∫ 1
�1+v(X(s),s)2

ds (23) 

On the other hand, given a speed field, constructing the trajectory and evaluating travel time is a 
direct problem which is, at least theoretically, a straight-forward process. However, in practice 
this process is very inefficient since we should numerically approximate the above line integral. 
Also, travel time estimates obtained using trajectory construction methods will have a poor 
quality since errors in speed estimates will be accumulated in this process. Instances of this 
method resulted in errors up to 10 percent in travel time estimates over a half a mile segment. 
More details on these numerical experiments are given in the next chapter. 

Here instead of the integral representation, let’s focus on local variations in travel time. In other 
words, differential equations relating travel time and speed seem to be more useful in this setting. 
In this context we should redefine the travel time as the minimum distance from any given point 
(x, t) in the solution domain to the downstream boundary (L, . ). This definition along with the 
assumption of smoothness of travel time will result in a simple representation of travel times in 
the space-time solution domain as illustrated in Figure 4. In Figure 4 points in the space-time 
domain with the same travel time to the downstream boundary are shown in the form of a set of 
iso-distance contours. Also, this representation suggests that travel times at upstream (or any 
other point along the highway) is in fact a cross-section of various contours. Partial differential 
equation schemes may be used to numerically solve the proposed travel time model. 
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Figure 4. Concept of travel time as distance from downstream boundary in a wave 
propagation paradigm. 

In the following sections some desirable properties of travel time such as stability and first-in 
first-out are discussed and relevant conditions on travel time derivatives are presented. Later, the 
space-time partial differential equation representing relationship between partial derivatives of 
travel time and local speed is derived and its properties in relations with the feasible region of 
local travel time variations are discussed. Also, two efficient finite difference schemes to solve 
for travel times given speeds are presented. 

3.2.1 Travel Time Properties and Modeling 

3.2.1.1 Stability 

Under stable traffic flow condition, speeds over time and space do not change. In terms of travel 
times, stability in time direction suggests that travel time at a given point on the highway will be 
constant over time, or in other words 

τt = 0 (24) 
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τtt = 0 (25) 

In the space direction, however, stability has a different interpretation. Under stable conditions, 
at any given time, it takes a vehicle ∆t = ∆x v⁄ = n∆x additional time units to cover a distance 
∆x in front of it. This time lapse is effectively the difference in travel time between two points 
along the space coordinate ∆τ = τ(x + ∆x, . ) − τ(x, . ) = −∆t. Therefore, we can write 

τx = − 1 v⁄ = −n (26) 

τxx = 0 (27) 

3.2.1.2 First-In-First-Out (FIFO) 

To enforce the no-passing condition on vehicle trajectories in the solution domain, it is necessary 
to require any trajectory pair that entered the segment in a given order to leave the segment in the 
same order and vice versa. 

It should be noted that the forward FIFO condition is well-known and can be derived by forcing 
departure times of two vehicles entering the segment at times t and t + ∆t to follow the same 
order D(t) ≤ D(t + ∆t). In other words, 

t + τ(. , t) ≤ t + ∆t + τ(. , t + ∆t) (28) 

τt = lim∆t→0 �τ(. , t + ∆t) − τ(. , t)� ∆t⁄  ≥ −1 (29) 

However, the backward FIFO is to enforce the condition that arrival times of two vehicles 
departing the segment at times θ and θ + ∆θ to follow the same order A(θ) ≤ A(θ + ∆θ) 

θ − δ(. ,θ) ≤ θ + ∆θ − δ(. ,θ + ∆θ) (30) 

δθ = lim∆θ→0 �δ(. ,θ + ∆θ) − δ(. , θ)� ∆θ⁄ ≤ 1 (31) 

It should be noted that the realized travel time of a vehicle departing the segment at time θ, 
δ(. ,θ), is in fact the same as the travel time of the vehicle when it arrived in the segment at time 
t, τ(. , t). Therefore, we can deduce that 

τt = δθ ≤ 1 (32) 

Similarly, in the space direction we can write 

τ(x, . ) ≥ ∆x v(x, . )⁄ + τ(x + ∆x, . ) (33) 

τx = lim∆x→0 �τ(x + ∆x, . ) − τ(x, . )� ∆x⁄ ≤ −1 v(x, . )⁄ = −n (34) 

3.2.2 First Order Travel Time Model and Finite Difference Solution Schemes 

Let τ(x, t) represent travel time from a point (x, t) in space x and time t coordinates to a given 
downstream point xd. This definition specifies the so called a priori travel time since at point 
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(x, t) travel time τ(x, t) has not yet realized. It should be noted that in what follows derivations 
and proposed solution schemes are based on this definition of travel time. However, it will be 
trivial to derive similar models in the case of a posteriori travel times. 

Assuming smoothness and therefore existence of derivatives we can use Taylor’s function 
expansion to obtain the travel time near a point (x, t) as 

τ(x + dx, t + dt) = τ(x, t) + τtdt + τxdx + O((dt)2) + O((dx)2) (35) 

Figure 5 illustrates these definitions and the above relationship where the pair of points (x, t) and 
(x + dx, t + dt) are located on a single vehicle trajectory. In this case, it is obvious that travel 
time to downstream at the second point has a simple relationship with the travel time at the first 
point, or more specifically we can write 

 

Figure 5. Schematic illustration of a vehicle trajectory in space-time domain 

τ(x + dx, t + dt) = τ(x, t) − dt (36) 

Substituting (36) into (35), τ(x, t) term cancels out on both sides and then moving derivative 
terms to the right hand side we obtain 

τtdt + τxdx = −dt + O((dt)2) + O((dx)2) (37) 

Now dividing both sides of (37) by dt we get 

τt + τx �
dx
dt
� = −1 + O(dt) + O �(dx)2

dt
� (38) 

As dt goes to zero we know in the limit dx
dt

 goes to speed v(x, t) which in vehicular traffic is 
typically assumed to be bounded from above by a known free flow speed vf. Therefore, taking 
the limits from both sides of (38) we obtain the following equation 

𝑑𝑑 
(𝑥, 𝑡) 

(𝑥 + 𝑑𝑑, 𝑡 + 𝑑𝑑) 

𝑑𝑑 

𝑡 

𝑥 
𝑥 = 𝑥𝑑 

𝜏(𝑥 + 𝑑𝑑, 𝑡 + 𝑑𝑑) 
𝜏(𝑥, 𝑡) 
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τt + vτx = −1 (39) 

which is a first order linear PDE that represents the relationships between partial derivatives of 
travel time in space and time directions at any given point. At a given location when τt  is 
positive it means that travel times are increasing as time goes by, while τt negative suggests that 
travel times at that location are decreasing. At steady state (τt = 0) travel time does not change 
over time. To enforce FIFO condition it is necessary that −1 ≤ τt ≤ 1. Thus according to (39) in 
the extremes of this bound the travel time derivative in the space direction will be defined by 

τx = �
−2
v

            if τt = 1, v > 0
−1
v

            if τt = 0, v > 0
 (40a) 

vτx = 0               if  τt = −1 (40b) 

Travel time model (39) can be solved numerically using a forward-time backward-space (FTBS) 
finite difference scheme. For this purpose we need to discretize the solution domain into cells. 
First, time duration T is divided into N time intervals {tn|n = 0,1, … , N} each of length ∆t =
T/N and the highway length X is divided into M space cells {xi|i = 0,1, … , M} each of length 
∆x = X/M. To each space cell xi at time interval tn, a discrete average speed Un

i  and travel time 
θni  is assigned. Therefore, under smooth conditions travel time evolution at each space cell over 
time is given by, 

θn+1i = θni −
∆t
∆x

Un+1
i �θni − θni−1� − ∆t (41) 

It should be noted that this scheme requires an estimate of speed Un+1
i  at each update. The speed 

estimates can be obtained from a Godunov finite difference scheme (CTM-v) proposed to solve 
LWR-v model such as (6), (7), (11) and (12) which is summarized here as following 

vt + R(v)x = 0 (42) 

Un+1
i = Un

i − ∆t
∆x

(g�Un
i , Un

i+1� − g�Un
i−1, Un

i �) (43) 

where the flow g is defined as, 

g(v1, v2) =

⎩
⎨

⎧
R(v2)                         if v1 ≤ v2 ≤ vc 
R(vc)                         if v1 ≤ vc ≤ v2
R(v1)                         if vc ≤ v1 ≤ v2
max (R(v1), R(v2))      if v1 ≥ v2   

 (44) 

where vc is the minimum of the convex flux function. In the case of Greenshield’s flux (45), we 
will have vc = vf

2
. 

R(v) = v2 − vf v (45) 

Also, in this case, to ensure stability of the numerical discretization method, the length of both 
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spatial and time steps must meet the Courant-Friedrichs-Lewy (CFL) condition: 

�∆t
∆x

max (R′(v))� ≤ 1 (46) 

The CFL condition suggests that no entering vehicle at the beginning of a time interval can exit 
the cell in that same time interval. Thus, in the case of Greenshield’s flux function, this condition 
translates to 

vf∆t ≤ ∆x (47) 

It should be noted that scheme (41) is expected to work well under smooth conditions. However, 
this assumption does not typically hold under real traffic conditions where abrupt jumps 
(shockwaves) in traffic variables such as density, speed and therefore travel times are prevalent. 
In the next section, we derive a conservative form of the travel time model which renders itself to 
more robust finite difference schemes in presence of discontinuities. 

3.2.3 Conservative Travel Time Model 

To derive the conservative form of the travel time model let’s consider the first order LWR-v 
velocity based continuum traffic flow model (42) to represent the speed evolutions in 
conjunction with the first order linear travel time model (39) presented earlier. 

�vt + R(v)x = 0
τt + vτx = −1  (48) 

Assuming free flow speed is constant over time and by multiplying LWR-v and travel time 
models by τ and (v − vf) respectively we obtain the following equivalent statements for both 
models 

�τ
(v − vf)t + τR(v)x = 0                   

(v − vf)τt + v(v − vf)τx = vf − v  (49) 

Recalling (45) the Greenshields’ LWR-v flux function, we can sum up the two sides of the above 
pair of equations to obtain 

[(v − vf)τ]t + [v(v − vf)τ]x = vf − v (50) 

Setting (v − vf)τ = u in the above equation we arrive at the standard conservative form of the 
travel time model 

ut + (vu)x = vf − v (51) 

This is a nonlinear nonhomogeneous hyperbolic PDE which is a conservation law with linear 
source term. The conserved variable u can be interpreted as the excess distance a vehicle would 
have covered during its travel time τ had it traveled at free flow speed vf all the way instead of 
its spot speed v. It should be noted that in solving for travel time τ it is preferred to work with 
(50) due to its explicit form. These solutions are designed to take into account the fact that 
despite smoothness assumptions discontinuities (shockwaves) are present in the solution domain. 
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To obtain weak solutions of this PDE it is possible to use any standard finite difference scheme 
which satisfies the entropy conditions. Here we propose a Godunov like finite difference scheme 
such as the following to solve this model. 

θn+1i =
�Uni −vf�θni −

∆t
∆xUn+1

i �F�Uni ,Uni+1,θni ,θni+1�−F�Uni−1,Uni ,θni−1,θni ��+∆t�vf−
Uni +Un+1

i

2 �

Un+1i −vf
 (52) 

where, 

F(v1, v2, τ1, τ2) = f(v∗, τ∗) = v∗(v∗ − vf)τ∗ = g(v1, v2)τ∗ (53) 

and due to the fact that Greenshields velocity flux R(v) is non-positive and FIFO conditions 
(τ1 ≥ τ2), we define 

τ∗ = �τ1       if (v1 − vf)τ1 ≤ (v2 − vf)τ2
τ2       if (v1 − vf)τ1 > (v2 − vf)τ2

 (54) 

It should be noted that here similar to previous scheme we can use CTM-v model given by (6), 
(7), (11) and (12) to estimate speeds used in travel time estimation. 

In our application, it should be noted that boundary values are very easy to determine. In fact, at 
downstream point the value of travel time function is constantly equal to zero 

 

Figure 6. Space-time grid representation of the solution domain. 

In our application, it should be noted that boundary values are very easy to determine. In fact, at 

𝜏(𝐿, 𝑡) = 0 
𝑥 = 𝐿 

𝑥 = 0 
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downstream point the value of travel time function is constantly equal to zero 

τ(L, t) = 0 (55) 

Initial conditions are also assumed to be known at every point along the segment under 
consideration 

τ(x, 0) = F(x) (56) 

Travel time data provided by AVI technologies such as Bluetooth detection units can serve as 
additional boundary, initial or internal conditions. In our specific application such data sources 
are considered as boundary conditions since the pair of detectors are assumed to be placed at 
both ends of the segment of interest 

τ(0, ti) = G(ti) (57) 

Figure 6 shows a typical grid in which initial and downstream boundary conditions on travel 
times are represented by dark nodes, while red nodes represent occasional travel time 
measurements at upstream boundary. 

3.3 State Space Models 

First, a brief overview of dynamical systems is given. The most general representation of a 
dynamical system can be given as 

� ẋ = f(x, u, w)
y = h(x, v)      (58) 

where, 

x, is the system state 

u, is the system input 

w, is the system process noise 

y, is the measurements obtained from the system 

v, is the measurement noise 

f, is the system dynamic function, and 

h, is the measurement function. 

If f(.) and h(.) are explicit functions of time t then the system is time-varying. Otherwise, the 
system is time invariant. Also, it should be noted that if f(.) and h(.) are linear functions then the 
system is linear, 
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�ẋ = Ax + Bu + w
y = Hx + v            (59) 

where, 

A, is the system matrix, 

B, is the input matrix, and  

H, is the output matrix. 

State estimation under the general model given above is possible yet it is not easy in most 
practical cases. In fact, two problems need to be resolved with regard to the general state-space 
model: 

• Nonlinearity 

• Continuity 

In this study, we propose the following two solutions to deal with each problem: 

• Linearization 

• Discretization 

In the following sections basics of each step in deriving a linear and discrete state space model 
are presented. 

3.3.1 Linearization 

To linearize the model the right hand side of the system and measurement equations need to be 
expanded around a given point using Taylor’s expansion 

�
ẋ = f(x�, u� , w�) + ∂f

∂x
�
x�

(x − x�) + ∂f
∂u
�
u�

(u− u�) + ∂f
∂w
�
w�

(w − w�)

y = h(x�, v�) + ∂h
∂x
�
x�

(x − x�) + ∂h
∂v
�
v�

(v − v�)                                     
 (60) 

Noting that 

x�̇ = f(x�, u� , w�) (61) 

y� = h(x�, v�) (62) 

we can write 
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�
ẋ − x�̇ = ∂f

∂x
�
x�

(x − x�) + ∂f
∂u
�
u�

(u − u�) + ∂f
∂w
�
w�

(w− w�)

y − y� = ∂h
∂x
�
x�

(x − x�) + ∂h
∂v
�
v�

(v − v�)                                
 (63) 

And, setting the differences as new variables, 

x� = x − x� (64) 

u� = u− u� (65) 

w� = w − w�  (66) 

v� = v − v� (67) 

we can write 

�
x�̇ = ∂f

∂x
�
x�

x� + ∂f
∂u
�
u�

u� + ∂f
∂w
�
w�

w�

y� = ∂h
∂x
�
x�

x� + ∂h
∂v
�
v�

v�                    
 (68) 

or, simply 

�x�̇ = Ax� + Bu� + Cw�
y� = Hx� + Dv�             (69) 

where, definitions of matrices A, B, C, H, and D are self-evident. 

3.3.2 Discretization 

Transformation from continuous time to discrete time dynamics is presented below.  

x�(t) = eA(t−t0)x�(t0) + ∫ eA(t−τ)Bu�(τ)dτt
t0

+ ∫ eA(t−τ)Cw�(τ)dτt
t0

 (70) 

Let t = tk (some discrete time point) and let the initial time t0 = tk−1 (the previous discrete time 
point). Assume that A(τ), B(τ), C(τ), u�(τ), and w�(τ) are approximately constant in the interval 
of integration. We then obtain 

x�(tk) = eA(tk−tk−1)x�(tk−1) + ∫ eA(tk−τ)dτtk
tk−1

Bu�(tk−1) + ∫ eA(tk−τ)dτtk
tk−1

Cw�(tk−1) (71) 

Now let’s define ∆t = tk − tk−1, and α = τ − tk−1, and substitute for τ in the above equation to 
obtain 

x�(tk) = eA∆tx�(tk−1) + eA∆t ∫ e−Aαdα∆t
0 Bu�(tk−1) + eA∆t ∫ e−Aαdα∆t

0 Cw�(tk−1) (72) 

To further simplify please note that if A is invertible (nonsingular), then we can write 
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∫ e−Aαdα∆t
0 = [I − e−A∆t]A−1 (73) 

And therefore, the linear discrete time system dynamic equation can be summarized as 

x�(tk) = Fx�(tk−1) + Gu�(tk−1) + Lw�(tk−1) (74) 

where, 

F = eA∆t (75) 

G = F[I− e−A∆t]A−1B (76) 

L = F[I − e−A∆t]A−1C (77) 

But, when A is not invertible (singular) then computing the matrix exponential integral is not as 
straight-forward. In this case there are two approaches to this problem. The first approach 
consists of employing interpolating polynomial. This method besides giving an approximation is 
not conducive to straight-forward implementation. The second approach, namely choosing a sub-
matrix of an extended matrix exponential is adopted in this study. We define, 

�X�̇ = A�X�           
y� = H�X� + Dv�

 (78) 

where, 

X� = �
x�
u�
w�
� (79) 

A� = �
A B C
0 0 0
0 0 0

� (80) 

H� = [H 0 0] (81) 

Now, this can be expressed easily in the discretized form, 

X�(tk) = F�X�(tk−1) (82) 

where, 

F� = eA�∆t (83) 

F� = �
F G L
− − −
− − −

� (84) 

The generalized form is obtained by adding an error term to the system dynamics equation 
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X�(tk) = F�X�(tk−1) + W�k−1 (85) 

W�k = �
0
0
ξk
� (86) 

ξk~N(0,σ2) (87) 

It should be noted that essential properties of a dynamical system from an analytical perspective 
include the following: 

• Stability 

• Controllability and observability 

• Stabilizability and detectability 

These properties can be investigated using definitions and theorems given in standard textbooks 
on state space modeling and estimation (Simon, 2006). 

 

While various methods are proposed to estimate system state under the most general state space 
models, the linear models are most useful in terms of their applicability and rigorous theoretical 
derivations. The traffic and travel time dynamical models given in 4.1 and 4.2 need to be recast 
in a state-space form. In this dynamical system, speeds and travel times are considered as system 
state. No inputs to the system are considered as our modeling effort does not include any traffic 
control measures. A subset of system state vector (speeds and travel times) is considered as 
measurement vector. 

Xk = AkXk−1 + BkUk + vk (88) 

3.4 Optimal Estimation Methods 

In this section estimation methods based on linear and nonlinear filtering approaches are 
introduced. Kalman filtering is a recursive root mean square error estimator that is optimal for 
linear state-space models with white noise errors. In case of nonlinear models and or correlated 
non-Gaussian errors, Kalman filtering is still applicable but only will be the best linear estimator. 
In such cases, extensions of Kalman filtering such as Extended Kalman filtering (EKF), 
Unscented Kalman filtering (UKF) and Particle filtering (PF) are more appropriate. It should be 
noted that these are least square methods which attempt to minimize the overall variance of the 
error by propagating the mean and variance of the estimation errors. Using the notation of the 
norm in Hilbert spaces, Kalman filter and its extensions minimize the H2 norm of the system 
state estimates. 

More recently based on a game theory concept methods to minimize the maximum estimation 
error are introduced which attempt to minimize the H∞  norm of the Hilbert space. The H∞ 
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filtering is capable of dealing with non-Gaussian and correlated (non-white) errors in the 
estimation process. This is the main advantage of H∞  filtering over H2  (Kalman) filtering. 
However, the issue of dealing with nonlinear system and measurement equations still needs 
further attention. In this segment nonlinear H∞  filters analogous to extensions of Kalman 
filtering are introduced. 

In practice we may experience delayed arrival of measurements at the processing unit or we may 
miss or rule out some measurement altogether in the estimation process. Also, and especially in 
the case of travel time measurement there is a high chance of out of order measurement arrivals. 
In this segment, remedies and methods to account for these effects effectively and efficiently in 
the estimation process are introduced. 

In practice, out of sequence arrival of measurements are common place in multi-sensor central 
processing systems. Essentially, two main approaches to accounting for delayed measurements 
in the estimation process exist. The first approach is comprised of step by step update of states 
from time to which the delayed measurement belongs to the current time. This would virtually 
require a parallel update process. Instead, the second method is essentially trying to update the 
current state in a giant leap. The two methods have different implications in terms of their 
efficiency, processing and storage requirements. 

3.4.1 DISCRETE KALMAN FILTER 

Considering a linear discrete-time dynamic system,  

𝑣𝑛+1 = 𝑀𝑛𝑣𝑛 + 𝑤𝑛 (89) 

with measurements, 𝑦𝑛, that are linearly related to the state of the system at each time interval: 

𝑦𝑛 = 𝐻𝑛𝑣𝑛 + 𝑢𝑛 (90) 

and, the set of additional assumptions that system and measurement errors are white and not 
correlated: 

𝐸(𝑤𝑛𝑤𝑘𝑇) = 𝑄𝑛𝛿𝑛−𝑘 (91) 

𝐸(𝑢𝑛𝑢𝑘𝑇) = 𝑅𝑛𝛿𝑛−𝑘 (92) 

𝐸(𝑤𝑛𝑢𝑘𝑇) = 0,                ∀𝑛, 𝑘 (93) 

It is desired to find the best estimate of the system at each time interval in a least square sense. 
Kalman filter is a linear recursive estimator of the a posteriori state of the system, 𝑣�𝑛+ based on 
the a priori estimate of the state, 𝑣�𝑛−, and the new measurement 𝑦𝑛: 

𝑣�𝑛+ = 𝑣�𝑛− + 𝐾𝑛(𝑦𝑛 − 𝐻𝑛𝑣�𝑛−) (94) 

where, 

𝐾𝑛 is the estimator gain matrix that minimizes the sum of the variances of all estimation errors, 
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𝑒̃𝑛 = 𝑣𝑛 − 𝑣�𝑛, to be optimally determined by solving the optimization problem: 

min𝐸[𝑒̃𝑛𝑇𝑒̃𝑛] (95) 

Subject to: (22-27) 

The Kalman filter is initialized as follows: 

𝑣�0+ = 𝐸(𝑣0) (96) 

𝑃0+ = 𝐸[(𝑣0 − 𝑣�0+)(𝑣0 − 𝑣�0+)𝑇] (97) 

Then, at each iteration, a priori and a posteriori estimates of the state and their corresponding 
covariance matrices are computed using the following equations: 

𝑃𝑛− = 𝐹𝑛−1𝑃𝑛−1+ 𝐹𝑛−1𝑇 + 𝑄𝑛−1 (98) 

𝐾𝑛 = 𝑃𝑛−𝐻𝑛𝑇(𝐻𝑛𝑃𝑛−𝐻𝑛𝑇 + 𝑅𝑛)−1  

      = 𝑃𝑛+𝐻𝑛𝑇𝑅𝑛−1 (99) 

𝑣�𝑛− = 𝑀𝑛−1𝑣�𝑛−1+  (100) 

𝑣�𝑛+ = 𝑣�𝑛− + 𝐾𝑛(𝑦𝑛 − 𝐻𝑛𝑣�𝑛−) (101) 

𝑃𝑛+ = (𝐼 − 𝐾𝑛𝐻𝑛)𝑃𝑛−(𝐼 − 𝐾𝑛𝐻𝑛)𝑇 + 𝐾𝑛𝑅𝑛𝐾𝑛𝑇  

      = [(𝑃𝑛−)−1 + 𝐻𝑛𝑇𝑅𝑛−1𝐻𝑛]−1  

      = (𝐼 − 𝐾𝑛𝐻𝑛)𝑃𝑛− (102) 

3.4.2 DELAYED MEASUREMENT KALMAN FILTER 

The standard Kalman filter is designed to make optimal estimates of the state variables on the 
basis of measurements that arrive at the processing unit in a sequential order. In other words, at 
current time interval 𝑛 in the Kalman filter, we have a priori state and covariance estimates 𝑣�𝑛−, 
and 𝑃𝑛− that take into account measurements up to and including time interval 𝑛 − 1. Also, the a 
posteriori state and covariance estimates, 𝑣�𝑛+, and 𝑃𝑛+ based on measurements up to and including 
time interval 𝑛 are assumed to be known. In practice, however, it is common place to receive 
measurement(s) 𝑣𝑛0, where 𝑛0 < 𝑛. To account for these delayed measurements then we should 
update the state estimate and its covariance to 𝑣�𝑛𝑛0 , and 𝑃𝑛𝑛0 , respectively. The strategy 
normally adopted to tackle this problem is first to retrospectively predict (retrodict) the state 
estimate from time interval 𝑛 back to interval 𝑛0, 

𝑆𝑛 = 𝐻𝑛𝑃𝑛−𝐻𝑛𝑇 + 𝑅𝑛 (103) 

𝑣�𝑛0𝑛 = 𝐹𝑛0𝑛�𝑣�𝑛 − 𝑄𝑛𝑛0𝐻𝑛
𝑇𝑆𝑛−1𝑟𝑛� (104) 
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where, 

𝑟𝑛 = 𝑦𝑛 − 𝐻𝑛𝑣�𝑛−, and (105) 

𝑆𝑛 = 𝐶𝑜𝑣(𝑟𝑛) (106) 

Then we compute the covariance of the retrodicted state using the following equations 

𝑃𝑤(𝑛, 𝑛0) = 𝑄(𝑛,𝑛0)− 𝑄(𝑛,𝑛0)𝐻𝑇(𝑛)𝑆−1(𝑛)𝐻(𝑛)𝑄(𝑛,𝑛0) (107) 

𝑃𝑣𝑤(𝑛,𝑛0) = 𝑄(𝑛,𝑛0) − 𝑃−1(𝑛)𝐻𝑇(𝑛)𝑆−1(𝑛)𝐻(𝑛)𝑄(𝑛, 𝑛0) (108) 

𝑃(𝑛0, 𝑛) = 𝐹(𝑛0,𝑛){𝑃(𝑛)− 𝑃𝑣𝑤(𝑛, 𝑛0) − 𝑃𝑣𝑤𝑇 (𝑛, 𝑛0) + 𝑃𝑤(𝑛,𝑛0)}𝐹𝑇(𝑛0, 𝑛) (109) 

Now we can compute the covariance of the retrodicted measurement at time 𝑛0 using 

𝑆(𝑛0) = 𝐻(𝑛0)𝑃(𝑛0, 𝑛)𝐻𝑇(𝑛0) + 𝑅(𝑛0) (110) 

Then we can compute the covariance of the state at time 𝑛 and the retrodicted measurement at 
time 𝑛0 using the following 

𝑃𝑣𝑦(𝑛, 𝑛0) = [𝑃(𝑛) − 𝑃𝑣𝑤(𝑛,𝑛0)]𝐹𝑇(𝑛0, 𝑛)𝐻𝑇(𝑛0) (111) 

Finally, we use the delayed measurement 𝑦(𝑛0) to update the state estimate and its covariance 

𝑣�(𝑛, 𝑛0) = 𝑣�(𝑛) + 𝑃𝑣𝑦(𝑛,𝑛0)𝑆−1(𝑛0)[𝑦(𝑛0) −𝐻(𝑛0)𝑣�(𝑛0,𝑛)] (112) 

𝑃(𝑛,𝑛0) = 𝑃(𝑛) + 𝑃𝑣𝑦(𝑛, 𝑛0)𝑆−1(𝑛0)𝑃𝑣𝑦𝑇 (𝑛,𝑛0) (113) 

It should be noted that the computational cost of this delayed measurement filter can be reduced 
by considering some simplifying approximations with slight reduction in the accuracy of the 
estimates. 

3.4.3 𝐇∞ FILTER 

As before, consider the system equations (84), (85) along with the linear transformation of state 
variable 𝑣𝑛, 

𝑧𝑛 = 𝐿𝑛𝑣𝑛 (114) 

Please note that we are not making any assumptions about system model and estimation errors 
𝑤𝑛, and 𝑢𝑛. Our goal is to estimate 𝑧𝑛. It is obvious that if we let transformation matrix 𝐿𝑛 to be 
equal to the identity matrix 𝐼, then 𝑧𝑛 = 𝑣𝑛. 

The cost function in the estimation problem is given as 

𝐽1 =
∑ ‖𝑧𝑛−𝑧̂𝑛‖𝑆𝑘

2𝑁−1
𝑛=0

‖𝑥0−𝑥�0‖𝑃0−1
2 +∑ �‖𝑤𝑛‖𝑄𝑛−1

2 +‖𝑣𝑛‖𝑅𝑛−1
2 �𝑁−1

𝑛=0
 (115) 
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where, 𝑃0, 𝑄𝑛 , 𝑅𝑛  and 𝑆𝑛  are symmetric, positive definite matrices chosen by the user for the 
specific problem. 

The cost function (110) can be made to be less than a user specified threshold 1 𝜃⁄  with the 
following estimation strategy, 

𝑆𝑛̅ = 𝐿𝑛𝑇 𝑆𝑛𝐿𝑛 (116) 

𝐾𝑛 = 𝑃𝑛[𝐼 − 𝜃𝑆𝑛̅𝑃𝑛 + 𝐻𝑛𝑇𝑅𝑛−1𝐻𝑛𝑃𝑛]−1𝐻𝑛𝑇𝑅𝑛−1 (117) 

𝑣�𝑛+1 = 𝑀𝑛�𝑣�𝑛 + 𝐾𝑛(𝑦𝑛 − 𝐻𝑛𝑣�𝑛 )� (118) 

𝑃𝑛+1 = 𝑀𝑛𝑃𝑛[𝐼 − 𝜃𝑆𝑛̅𝑃𝑛 + 𝐻𝑛𝑇𝑅𝑛−1𝐻𝑛𝑃𝑛]−1𝑀𝑛
𝑇 + 𝑄𝑛 (119) 

However, the above solution is valid only if the following necessary condition holds at each time 
step 

𝑃𝑛−1 − 𝜃𝑆𝑛̅ + 𝐻𝑛𝑇𝑅𝑛−1𝐻𝑛 > 0 (120) 

3.4.4 MIXED KALMAN/𝐇∞ FILTER 

We would like to have a filter that combines the best features of Kalman filtering with the best 
features of 𝐻∞ filtering.  

Steady-state Kalman filter cost function is 

𝐽2 = lim𝑁→∞ ∑ 𝐸(‖𝑣𝑛 − 𝑣�𝑛‖2)𝑁
𝑛=0  (121) 

Let 𝑆𝑘and 𝐿𝑘 are identity matrices, then the steady-state 𝐻∞ estimator cost function is 

𝐽∞ = lim𝑁→∞ max𝑥0,𝑤𝑛,𝑢𝑛
∑ ‖𝑣𝑛−𝑣�𝑛‖2𝑁
𝑛=0

‖𝑥0−𝑥�0‖𝑃0−1
2 +∑ �‖𝑤𝑛‖𝑄𝑛−1

2 +‖𝑢𝑛‖𝑅𝑛−1
2 �𝑁

𝑛=0
 (122) 

Given an n-state observable LTI system 

𝑣𝑛+1 = 𝑀 𝑣𝑛 + 𝑤𝑛 (123) 

𝑦𝑛 = 𝐻 𝑣𝑛 + 𝑢𝑛 (124) 

Find an estimator of the form 

𝑣�𝑛+1 = 𝑀� 𝑣𝑛 + 𝐾𝑦𝑛 (125) 

Step 1: Find the n*n positive semidefinite matrix P that satisfies the following Riccati equation 

𝑃 = 𝑀𝑃𝑀𝑇 + 𝑄 + 𝑀𝑃(𝐼 𝜃2⁄ − 𝑃)−1𝑃𝑀𝑇 − 𝑃𝑎𝑉−1𝑃𝑎𝑇 (126) 

where 𝑃𝑎 and 𝑉 are defined as 
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𝑃𝑎 = 𝑀𝑃𝐻𝑇 + 𝑀𝑃(𝐼 𝜃2⁄ − 𝑃)−1𝑃𝐻𝑇 (127) 

𝑉 = 𝑅 + 𝐻𝑃𝐻𝑇 + 𝐻𝑃(𝐼 𝜃2⁄ − 𝑃)−1𝑃𝐻𝑇 (128) 

Step 2: Derive the 𝑀�  and 𝐾 matrices as 

𝐾 = 𝑃𝑎𝑉−1 (129) 

𝑀� = 𝑀 −𝐾𝐻 (130) 

The estimator of equation (120) satisfies the mixed Kalman/𝐻∞ estimation problem if and only if 
𝑀�  is stable. In this case, the state estimation error satisfies the bound 

lim𝑛→∞ ∑ ‖𝑣𝑛 − 𝑣�𝑛‖2𝑁
𝑛=0 ≤ 𝑇𝑟(𝑃) (131) 

3.4.5 ROBUST KALMAN/𝐇∞ FILTER 

𝑣𝑛+1 = (𝑀𝑘 + ∆𝑀𝑘)𝑣𝑛 + 𝑤𝑛 (132) 

𝑦𝑛 = (𝐻𝑘 + ∆𝐻𝑘)𝑣𝑛 + 𝑢𝑛 (133) 

�∆𝑀𝑛
∆𝐻𝑛

� = �𝑀1𝑛
𝑀2𝑛

� Γ𝑛𝑁𝑛 (134) 

where, 𝑀1𝑛, 𝑀2𝑛, and 𝑁𝑛 are known matrices, and Γ𝑛 is an unknown matrix for which (Γ𝑛𝑇Γ𝑛 −
𝐼) is a negative semidefinite matrix. 

The problem is to define a state estimator of the form 

𝑣�𝑛+1 = 𝑀�𝑛𝑣�𝑛 + 𝐾𝑛𝑦𝑛 (135) 

with the following properties: 

1. The estimator is stable (i.e., the eigenvalues of 𝑀�𝑛 are less than one in magnitude). 

2. The estimation error 𝑒̃𝑛 satisfies the following worst-case bound 

max𝑤𝑛,𝑢𝑛
‖𝑒̃𝑛‖2

‖𝑤𝑛‖2 +‖𝑢𝑛‖2 +‖𝑒̃0‖𝑆1−1
2 +‖𝑣0‖𝑆2−1

2 < 1
𝜃
 (136) 

3. The estimation error 𝑒̃𝑛 satisfies the following RMS bound 

𝐸[𝑒̃𝑛𝑇𝑒̃𝑛] < 𝑃𝑛 (137) 

The solution to this problem can be found by the following procedure 

Step 1: Choose some scalar sequence 𝛼𝑛 > 0, and a small scalar 𝜖 > 0. 

Step 2: Define the following matrices: 
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𝑅11𝑛 = 𝑄𝑛 + 𝛼𝑛𝑀1𝑛𝑀1𝑛
𝑇  (138) 

𝑅12𝑛 = 𝛼𝑛𝑀1𝑛𝑀2𝑛
𝑇  (139) 

𝑅22𝑛 = 𝑅𝑛 + 𝛼𝑛𝑀2𝑛𝑀2𝑛
𝑇  (140) 

Step 3: Initialize 𝑃𝑛 and 𝑃�𝑛 as follows: 

𝑃0 = 𝑆1 (141) 

𝑃�0 = 𝑆2 (142) 

Step 4: Find positive definite solutions 𝑃𝑛 and 𝑃�𝑛 satisfying the following Riccati equations: 

𝑃𝑛+1 = 𝑀1𝑛𝑇𝑛𝑀1𝑛
𝑇 + 𝑅11𝑛 + 𝑅11𝑛𝑅2𝑛𝑅11𝑛𝑇 − 

[𝑀1𝑛𝑇𝑛𝐻1𝑛𝑇 + 𝑅11𝑛𝑅2𝑛𝑅12𝑛 + 𝑅12𝑛]𝑅𝑛−1[… ]𝑇 + 𝜖𝐼 (143) 

𝑃�𝑛+1 = 𝑀𝑛𝑃�𝑛𝑀𝑛
𝑇 + 𝑀𝑛𝑃�𝑛𝑁𝑛𝑇�𝛼𝑛𝐼 − 𝑁𝑛𝑃�𝑛𝑁𝑛𝑇�

−1
𝑁𝑛𝑃�𝑛𝑀𝑛

𝑇 + 𝑅11𝑛 + 𝜖𝐼 (144) 

where the matrices 𝑅1𝑛, 𝑅2𝑛, 𝑀1𝑛, 𝐻1𝑛  and 𝑇𝑛 are defined as 

𝑅1𝑛 = �𝑃�𝑛−1 − 𝑁𝑛𝑇𝑁𝑛/𝛼𝑛�
−1
𝑀𝑛

𝑇 (145) 

𝑅2𝑛 = 𝑅1𝑛−1�𝑃�𝑛−1 − 𝑁𝑛𝑇𝑁𝑛/𝛼𝑛�
−1
𝑅1𝑛−𝑇 (146) 

𝑀1𝑛 = 𝑀𝑛 + 𝑅11𝑛𝑅1𝑛−1 (147) 

𝐻1𝑛 = 𝐻𝑛 + 𝑅12𝑛𝑇 𝑅1𝑛−1 (148) 

𝑇𝑛 = (𝑃𝑛−1 − 𝜃2𝐼)−1 (149) 

Step 5: If the Riccati equation solutions satisfy 

1
𝜃2
𝐼 > 𝑃𝑛 (150) 

𝛼𝑛𝐼 > 𝑁𝑛𝑃�𝑛𝑁𝑛𝑇  (151) 

then the estimator of equation ( ) solves the problem with 

𝑅�𝑛 = 𝐻1𝑛𝑇𝑛𝐻1𝑛𝑇 + 𝑅12𝑛𝑇 𝑅2𝑛𝑅12𝑛 + 𝑅22𝑛  (152) 

𝐾𝑛 = [𝑀1𝑛𝑇𝑛𝐻1𝑛𝑇 + 𝑅11𝑛𝑅2𝑛𝑅12𝑛 + 𝑅12𝑛]𝑅�𝑛−1 (153) 

𝑀�𝑛 = 𝑀1𝑛 − 𝐾𝑛𝐻1𝑛 (154) 
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3.4.6 CONSTRAINED KALMAN FILTER 

Typically, some extra information is available on relationships between state variables. To 
enforce these relationships usually additional constraints can be added to the state space model. 
Constrained Kalman Filter algorithm are developed to handle these situations. Over the years 
different approaches have been proposed to solve constrained Kalman Filters. Some notable 
approaches are the following: 

• Model Reduction 

• Perfect Measurements 

• Projection Approaches 

o Maximum probability approach 

o Least squares approach 

o General projection approach 

• A pdf Truncation Approach 

In this study, the general projection approach is adopted to handle any likely situation where 
flow dynamics model and measurement equations are accompanied by any additional constraint 
on measured travel times and speeds. this problem can be written in the following general form: 

𝑣� = 𝑎𝑟𝑔𝑚𝑖𝑛𝑣�(𝑣� − 𝑣�)𝑇𝑊(𝑣� − 𝑣�)  such that 𝐷𝑣� = 𝑑 (155) 

where 𝑊 is any positive definite weighting matrix. The solution to the above problem is 

𝑣� = 𝑣� −𝑊−1𝐷𝑇(𝐷𝑊−1𝐷𝑇)−1(𝐷𝑣� − 𝑑) (156) 

If we set 𝑊 = 𝑃−1, it results in the minimum variance filter which is similar to the maximum 
probability approach. Alternatively, if we set 𝑊 = 𝐼 our solution will be similar to that of least 
squares approach. 

3.4.7 CONSTRAINED 𝐇∞ FILTER 

The constrained H∞ filter can be summarized as follows. 

Given a linear system 

𝑣𝑛+1 = 𝑀𝑛𝑣𝑛 + 𝑤𝑛 (157) 

𝑦𝑛 = 𝐻𝑛𝑣𝑛 + 𝑢𝑛 (158) 

𝐷𝑛𝑣𝑛 = 𝑑𝑛 (159) 

where the last equation above specifies equality constraints on the state. We assume that the 
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constraints are normalized so 𝐷𝑛𝐷𝑛𝑇 = 𝐼. The covariance of 𝑤𝑛 is equal to 𝑄𝑛, but it might have a 
zero or a nonzero mean (i.e., it might contain a deterministic component). The covariance of 𝑢𝑛 
is the identity matrix. 

Step 1: Initialize the filter as follows 

𝑣�0 = 0 (160) 

𝑃0 = 𝐸(𝑣0𝑣0𝑇)  (161) 

Step 2: At each time step 𝑛 = 0,1, …, do the following 

Step 2.1: Choose the tuning parameter matrix Gn to weight the deterministic, biased component 
of the process noise. If 𝐺𝑛 = 0 then we are assuming that the process noise is zero-mean and we 
get the Kalman filter performance. As 𝐺𝑛  increases we are assuming that there is more of a 
deterministic, biased component to the process noise. This gives us better worst-case error 
performance but worse RMS error performance. 

Step 2.2: Compute the next state estimate as follows 

𝑈𝑛 = 𝐷𝑛𝑇𝐷𝑛 (162) 

Σ𝑛 = (𝑃𝑛𝐻𝑛𝑇𝐻𝑛 − 𝑃𝑛𝐺𝑛𝑇𝐺𝑛 + 𝐼)−1𝑃𝑛 (163) 

𝑃𝑛+1 = (𝐼 − 𝑈𝑛+1)𝑀𝑛Σ𝑛𝑀𝑛
𝑇(𝐼 − 𝑈𝑛+1) + 𝑄𝑛 (164) 

𝐾𝑛 = (𝐼 − 𝑈𝑛+1)𝑀𝑛Σ𝑛𝐻𝑛𝑇 (165) 

𝑣�𝑛+1 = 𝑀𝑛𝑣�𝑛 + 𝐾𝑛(𝑦𝑛 − 𝐻𝑛𝑣�𝑛 ) (166) 

Step 2.3: Verify that 

(𝐼 − 𝐺𝑛𝑃𝑛𝐺𝑛𝑇) ≥ 0 (167) 

If not then the filter is not valid. 

3.4.8 𝐇𝟐 (KALMAN) FILTER EXTENSIONS 

Kalman Filter (KF) is developed based on two major assumptions that system dynamics model is 
linear and also modeling and measurement errors are normally and independently distributed. 
These are essentially very strong assumptions as most systems are both nonlinear and have non 
Gaussian and correlated errors. To deal with nonlinear systems such as the traffic modeling 
system proposed here we need to use Extended Kalman Filter (EKF) which accounts for 
nonlinearity in system modeling. Similarly, Unscented Kalman Filter (UKF) and Particle Filter 
(PF) are standard solutions to the non-white noise issue as mentioned previously. 
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3.4.9 OUT OF SEQUENCE AND MISSING MEASUREMENTS 

In practice, out of sequence arrival of measurements are common place in multi-sensor central 
processing systems. Essentially, two main approaches to accounting for delayed measurements 
in the estimation process exist. The first approach is comprised of step by step update of states 
from time to which the delayed measurement belongs to the current time. This would virtually 
require a parallel update process. Instead, the second method is essentially trying to update the 
current state in a giant leap. The two methods have different implications in terms of their 
efficiency, processing and storage requirements. 

3.5 Summary 

In this chapter, first a well-known first order continuum traffic flow model is adopted to 
represent the dynamics of the system. An equivalent form of this model in terms of speed is 
derived. This model provides a theoretical framework to understand and analyze traffic processes 
on a variety of roadway facilities. Two approximate solution methods of this model are 
introduced. A finite difference and a finite element method for solving the velocity based 
equivalent of the first-order continuum traffic flow model numerically are proposed.  

Second, some desirable properties of travel time which are adopted in this study are briefly 
presented. Enforcing these properties on the estimates defines a feasible solution region for travel 
time partial derivatives. Then, interpreting travel time as distance to a boundary in space-time 
domain we introduce a framework to relate integrated lagrangean (travel time) data and local 
speeds. Relevant derivations based on the first order kinematics principle are presented. Two 
efficient finite difference schemes to solve for travel times given speeds is introduced.  

Finally, to derive the optimal estimates from the resulting state space model in presence of errors 
in modeling and measurements we propose optimal filtering approach. Kalman filtering (H2), 
H∞  and their extensions for nonlinear models and measurement equations are introduced. In 
particular, extended Kalman filtering (EKF), unscented Kalman filtering (UKF) and particle 
filtering (PF) and their H∞ equivalents are discussed. Two alternative approaches to incorporate 
travel time data as either a nonlinear and implicit measurement equation or an additional implicit 
side constraint are introduced. Methods to address missing and out of sequence measurements 
are introduced. 

4 Methodology of Dynamic Travel Time Prediction 

Previous studies use various methods to predict travel times by locating similar traffic trends in 
historical data sets. However, a travel time sequence is typically used in previous studies, which 
is a vector including a sequence of travel time values across different time intervals. Unlike 
previous studies of travel time prediction, a new algorithm is developed in this research by using 
the spatial and temporal traffic status information to obtain candidate traffic data from the 
historical travel database. The extracted candidate traffic data represent historical similar traffic 
patterns, and the candidates are aggregated to compute future travel times. 
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4.1 The Dynamic Travel Time Prediction Framework 

The proposed algorithm comprises three stages: identify current traffic status, select similar 
traffic patterns from historical data, and predict travel times. The framework of the three stages is 
demonstrated in Figure 7. The current traffic status is initially selected to represent the traffic 
status of all freeway sections from short-past to the current time interval. The traffic status in this 
case is a matrix across temporal and spatial axes. Thereafter, the historical traffic speed data with 
the same dimension to current traffic status is selected as a candidate. Based on the dissimilarity 
to the current speed matrix, several candidates are extracted to represent the historical recurrent 
traffic patterns that are similar to the current status. Finally, the subsequent dynamic travel times 
of those candidates are aggregated to represent the travel time distributions in the future. 

 

Figure 7. Framework of proposed dynamic travel time prediction algorithm. 

4.2 Matching Traffic Patterns 

A candidate selection scheme is proposed to select temporal-spatial traffic state candidates from 
a historical data set by matching with the real-time traffic state. Suppose c denotes the current 
time; the current traffic state [c-L+1, c-L+2, ... , c] and the matching temporal-spatial traffic data 
[t-L+1, t-L+2, ... , t] from a historical data set are denoted by tail time c and t, respectively. 
Here, L is the data length across time intervals to be matched. It should be noted that the traffic 
data of each time interval is a vector that covers all spatial sections (N sections) of the freeway 
stretch; therefore, the traffic data for L time intervals is a matrix with dimension L by N. Various 
template matching methods can be used to define the dissimilarity between the current traffic 
status and historical data, such as the Euclidean distance (Otsuka et al. 2000b, Otsuka et al. 
2000a, Mikami, Otsuka and Yamato 2009, Panangadan and Talukder 2010), data trends (Qiao et 
al. 2012, You and Kim 2000), image pattern recognition (Turk and Pentland 1991, Ahonen, 
Hadid and Pietikainen 2006), neural networks (Lint, Hoogendoorn and Zuylen 2005b, 
Hinsbergen et al. 2011), etc. In this study, the average Euclidean distance between the current 
temporal-spatial traffic data and each data matrix with the same dimension from the historical 
data set is calculated using Equation (168) to represent a dissimilarity measure. Other advanced 
methods can be adopted to increase the matching speed and accuracy and are being considered as 
part of future research efforts. 

 ( , ) ( , ) ( , )d c h M c L M h L L N   . (168) 
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where M(c,L) and M(h,L) represent the traffic data of the current and historical time intervals, 
respectively; and d(c,h) is the average Euclidean distance between the traffic speed matrix data 
of different time intervals.  

A small dissimilarity measure indicates that the matching historical data are similar to the current 
traffic pattern. Consequently, several candidates are selected according to the ascending order of 
the dissimilarity measure. Here, the maximum number of candidates is denoted by K, and the 
minimum acceptable dissimilarity is defined by dMIN. The set of candidates Hc is selected as 
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where hi is the selected candidate from the historical data set; K' denotes the resulting number of 
the selected candidates; and ɛ is used to avoid selecting adjacent candidates from the same day in 
the history data. The selected candidates represent the best matching to the current traffic status 
and will be used to calculate future travel times. 

4.3 Dynamic Travel Time Prediction 

The future dynamic travel times on the current day can be calculated based on the selected 
historical candidates. Considering the stochastic nature of a traffic system, the travel time 
prediction problem can be recognized as a time series prediction for nonlinear dynamic (chaotic) 
systems (Basharat and Shah 2009, Ikeguchi and Aihara 1995). The future traffic state for the 
current day can be predicted by the subsequent traffic state of each candidate from the historical 
data set. The linear combination of each candidate's subsequent traffic state is used to predict the 
future traffic status, and the corresponding weight is defined as the inverse of the dissimilarity 
measure of each candidate. The prediction traffic state starting from time interval c+p is obtained 
as 
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where M(hi+p) represents the p steps ahead subsequent traffic state for ith candidate; and w(hi) 
denotes the weight of ith candidate data. 

The next step is to calculate the dynamic travel time based on the subsequent traffic state of each 
candidate. Dynamic travel time is the actual, realized travel time that a vehicle could experience 
during a trip. If a vehicle leaves a trip origin at the current time, the roadway speed will not only 
change across space but also across time during the entire trip. Therefore, the traffic state 
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evolution over space and time is considered in our approach, as shown in Figure 8 to compute 
dynamic travel times. The speed values of the shaded cells are used to compute dynamic travel 
times. In this paper, the traffic state is assumed to be homogenous within each cell. Therefore, 
the trajectory slope, which represents the traffic speed, is a constant value in each cell. Assume 
that the trip starts from time interval tn. In this way, once the vehicle enters a new cell, the 
trajectory within this cell can be drawn as the straight dotted line in Figure 8, with the slope 
value equal to the traffic stream speed. Finally, the dynamic travel time can be calculated when 
the trajectory reaches the downstream boundary of the last freeway section (destination). 

Space

tn+2 td-1

x1

x2

...

xN-1

tn tn+1 ...

xN

td...

Dynamic Travel Time

x0

 

Figure 8. Illustration of dynamic travel time. 

The procedure for computing dynamic travel times is shown in Figure 9. Consequently, the 
dynamic travel time of each subsequent candidate can be obtained and the corresponding weight 
(recurrent probability) is defined by the dissimilarity measure of Equation (172). Finally, the 
travel time distribution of the future trip can be represented as 

 ( ) ( ), ( ) | 1, , 'i iTT c p TT h p w h i K     . (172) 

where TT(c+p) represents the dynamic travel time starting from time interval c+p; and TT(hi+p) 
denotes the subsequent travel time of ith candidate, according to the calculation as shown in Figure 
9. The travel time prediction result can also be calculated as the average value using  

'
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    . (173) 
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Figure 9. The flow chart of dynamic travel time calculation. 

An illustration of how to use current traffic status to find historical candidates and then predict 
travel time is shown in Figure 10. The testing day is August 4, 2010 and the current time is 16:00 
p.m. The current traffic status is represented by a matrix between the first and second vertical 
lines along all the sections. The template matching algorithm is implemented to find three 
historical data sets (May 28, 2010, August 2, 2010 and August 3, 2010) with a similar traffic 
pattern to the current traffic status. The image strips between the first and second lines on all four 
days include very similar congestion patterns (represented by red color) around the 50th section. 
Consequently, the future spatiotemporal traffic states from the selected candidates are used to 
represent the future traffic status of current day. This deduction can be supported by the fact that 
the image strips between the second and third lines on four days are very similar.  
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Figure 10. Samples of current traffic status and selected candidates. 

4.4 Revised Algorithm 

Based on the first case study of using the proposed approach to predict travel time, several 
improvements have been adopted to our algorithm to improve the prediction accuracy. The 
revised prediction algorithm will be tested on the second and third case studies, and the detailed 
information of the revised algorithm is presented below: 

1) The value of L is correlated to the current instantaneous travel time instead of using a 
fixed value for every time interval. For instance, a small value of L is used during 
uncongested time intervals and a large value is used for congested time intervals. The 
criterion is computed based on the value of the instantaneous travel time. 

2) The selected candidate number K' is also a variable correlated to the instantaneous travel 
time. During uncongested conditions, K' is set to be a large value in order to obtain a 
smoothed aggregation value from historical candidates. During time periods of high 
congestion, a smaller number of candidates is used since there are limited high congested 
data in our existing database. This may not be a problem in the future when the historical 
data set increases. 

3) During the process of template matching for each day in the historical data set, the data 
slice of the best fit (least matching cost) is selected. Moreover, the searching range is 
constrained to a fixed 2-hour window around the current time c. Therefore, only one data 
slice is selected for each day in the historical data set and, finally, K' candidates are 
selected from all data slices. 
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4) During the calculation of dissimilarity, a weight parameter is introduced to utilize the 
length of each section to scale the corresponding dissimilarity value. This is based on the 
fact that the same level of congestion on a long section compared to a short section 
should have more effect on the total dissimilarity calculation. 

 

5 Findings of Traffic Estimation 

In this chapter a series of relevant numerical tests on traffic modeling, data fusion and travel time 
data representation are presented. But, first traffic datasets used in this research are introduced. 

5.1 Traffic Datasets 

In this research four standard traffic datasets prepared and made available under Next Generation 
SIMulation (NGSIM) project will be used (FHWA 2006). These datasets provide a rich source of 
accurate and very detailed traffic data over a variety of facilities located in California and 
Georgia. These datasets contain high quality (resolution equal to one-tenth of the second) 
observations of the type, position, speed, and acceleration of every single vehicle that has been 
part of the traffic stream in the segment under study. These datasets include the following: 

5.1.1 The I-80 Data Set  

A data set representing 45 minutes of data collected during the afternoon peak period on a 
segment of Interstate 80 in Emeryville (San Francisco), California. The data set consists of 
detailed vehicle trajectory data, wide-area detector data and supporting data needed for 
behavioral algorithm research on a merge section of eastbound I-80.  

5.1.2 The US 101 Data Set  

A 45-minute freeway data set representing traffic flows on a segment of U.S. Highway 101 
(Hollywood Freeway) in the Universal City neighborhood of Los Angeles, California. The 
dataset represents vehicle trajectory data on a 2,100 foot, six lane segment of southbound U.S. 
101,. The merge/weave section represented in the data includes an on-ramp off-ramp connected 
by an auxiliary lane. The dataset consists of detailed vehicle trajectory data, wide-area detector 
data and supporting data needed for behavioral algorithm research. 

5.1.3 The Lankershim Data Set  

A 30-minute arterial dataset representing traffic flows on a segment of Lankershim Boulevard in 
the Universal City neighborhood of Los Angeles, California. The dataset represents bi-
directional vehicle trajectory data for an approximate 1,600-foot, three-to-four lane arterial 
segment of Lankershim Boulevard. The dataset consists of detailed vehicle trajectory data, wide-
area detector data and supporting data needed for behavioral algorithm research. 
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5.1.4 The Peachtree Data Set  

A 30-minute arterial dataset representing traffic flows on a segment of Peachtree Street in the 
Midtown neighborhood of Atlanta, Georgia. The dataset represents bi-directional vehicle 
trajectory data for an approximate 2,100-foot, two to three lane arterial segment of Peachtree 
Street, including one stop-controlled intersection and four signal-controlled intersections with 
permitted/protected left turns. The dataset consists of detailed vehicle trajectory data and 
supporting data needed for behavioral algorithm research.  

In the rest of this chapter results of experiments on US-101 dataset are presented. 

5.2 Traffic Modeling 

In this study, both FDM and FEM solution methods presented in chapter 4 are applied to the US-
101 dataset. For this purpose, the length of the highway is broken into ten cells, each 210 feet 
(~64 meter) long, and solution is updated in two second time intervals. Also, based on separate 
investigations, the parameters in Greenshields’ model, that is free flow speed and jam density, 
for this dataset have been estimated at 66 mph and 108 vehicles per mile per lane, respectively. 
Thus, for this case, we obtain the following linear speed-density relationship. 

𝑣 [𝑚𝑝ℎ] = 66 − 0.611 × 𝑘 [𝑣𝑝𝑚𝑝𝑙],        (𝑅2 = 0.13) (1) 

Statistical examination of error measures presented in Table 2 reinforces the notion that both 
FDM and FEM have an excellent performance in solving the velocity based continuum traffic 
model presented here. The bias in FDM and FEM solutions varies between one and three miles 
per hour. However, the mean absolute speed errors are in the four to six miles per hour range. 
Based on the results in Table 2, it seems that FDM has slightly a better performance compared to 
FEM. The results, however, are too close to make it possible for a general conclusion. Further 
comparison of these solution methods under different cell/element configurations and with 
different datasets may be necessary before a conclusive result can be obtained. 

Table 2. Overall performance of the approximate solution methods. 

Time Interval 
Solution 
Method 

Error (mph) Absolute Error (mph) 

Mean 
Std. 
Dev. 

%-ile 
Mean 

Std. 
Dev. 

%-ile 
25 50 75 25 50 75 

7:50am-8:05am FDM 2.1 6.3 -2.7 2.5 6.8 5.5 3.7 2.6 5.1 7.9 
FEM 2.7 6.4 -1.5 3.0 7.5 5.7 4.0 2.4 5.1 8.4 

8:05am-8:20am FDM 1.3 5.2 -1.9 0.8 4.5 4.1 3.5 1.3 3.0 6.1 
FEM 1.3 5.9 -2.4 0.8 4.9 4.6 3.8 1.6 3.6 6.9 

8:20am-8:35am 
FDM 1.7 5.6 -1.9 1.2 5.0 4.4 3.8 1.5 3.4 6.1 
FEM 1.7 6.2 -2.6 1.4 5.7 5.0 4.0 2.0 4.1 7.0 

 

Figure 11 depicts the variations in mean absolute speed errors over time as a result of using 
either solution method in the first 15 minute time interval. This shows that generally mean 
absolute errors are less than 10 miles per hour at any given time. The overall bias and mean 
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absolute errors the solution methods are in the one to three and four to six miles per hour range, 
respectively, as demonstrated in Table 2. 

 

7:50a.m.-8:05a.m. 

Figure 11. Mean absolute errors of the estimated speeds at elemental nodes of US-101 (blue 
and red lines represent errors from FDM and FEM methods, respectively) 

Also, it was observed that both methods are capable of reproducing major shockwaves when 
they pass through both upstream and downstream of the segment. Smaller shockwaves initiating 
somewhere in between the two end boundaries have not been traced properly in the real-time 
approximate solutions. These shockwaves are reflecting higher order phenomena which 
obviously cannot be captured using a first-order model such as LWR model. 

However, it seems that speed estimates obtained by solving LWR model may be further 
enhanced by incorporating additional traffic measurement sources in a stochastic state-space 
model framework. This may be conceived as a real-time estimation process which effectively 
combines LWR solutions with other direct or indirect speed measurements. Particularly, such an 
estimation process would be more beneficial in cases where measurement errors are significantly 
less than model errors. For instance, an additional loop detector in the middle of the segment or 
probe data could be used for this purpose. However, given the 0.4 mile length of this segment, it 
may not be realistic to assume in practice an additional loop detector will be in place for this 
purpose. Alternatively, assimilation methods to incorporate vehicle re-identification data into 
estimation process may prove as beneficial. 

5.3 Traffic Data Fusion 

The results given in traffic modeling section were based on solving a traffic dynamic model 
represented as a partial differential equation with accurate initial and boundary value conditions. 
However, in reality boundary speed measurements are not accurate. In this segment results of 
tests performed on the same problem with corrupted model and measurements are presented. A 
white noise error with standard deviation equal to five miles per hour is added to the model and 
boundary speed measurements. 

In addition, the effect of probe data on estimation quality is incorporated into the model using 
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random speed measurements from various points in the space-time solution domain. These 
internal speed measurements are corrupted by adding another white noise with three miles per 
hour standard deviation to the observed speeds. 

 

Figure 12. DKF speed estimate qualities at different penetration rates. 

Figure 12 presents the error measures obtained by applying discrete Kalman filtering (DKF) to 
the corresponding state-space model at different levels of probe penetration inside the traffic 
stream. At each penetration rate 30 replications of problem are solved. A mean and 95 percent 
confidence band curve for each error measure are presented. These results also verify Work et al. 
(2008) observation that five percent penetration rate is a critical value below which estimated 
speed error will sharply decrease with any additional probe data, while at larger penetration rates 
errors tend to decrease much more slowly with increasing penetration rates. When only boundary 
speed data are used (0% penetration rate), RMSE of the estimates is about 25 miles per hour 
which is consistent with the added white noise to the measurements and the model. Average 
absolute and relative absolute errors (MAE and MARE) in speed estimates at penetration rates 
below five percent are observed to be larger than 5 miles per hour and 20%, respectively. 
Interestingly, at zero penetration rate (Eulerian data alone) the MAE is at 22 miles per hour and 
the MARE stands at 90%. This shows the great value of fusing internal data (Lagrangean) with 
existing boundary speeds (Eulerian) to improve the overall estimation quality. 
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Figure 13. H_∞ speed estimate qualities at different penetration rates. 

Figure 13 presents the speed error measures when H∞ estimation method is applied. This figure 
corresponds to Figure 12. 

5.4 Travel Time Model and Finite Difference Schemes 

Spatiotemporal speed and travel time observations along with their boundary values are 
presented in Figure 14. The boundary values may be considered as accurate measurements 
obtained from a set of imaginary loop detectors accompanied with license plate matching 
cameras installed at the two boundaries of the segment. 

Two scenarios are considered to evaluate the impact of discretization on solution quality of the 
proposed finite difference schemes. First, the space time domain is broken into 210 feet (~64 
meter) long cells with two second updates. Second, a slightly coarser 420 feet (~128 meter) by 4 
second discretization is adopted. It should be noted that in both cases the ∆𝑥

∆𝑡
 ratio is equal to 105 

feet per second which is higher than free flow speed satisfying the stability condition. 



67 
 

  

  

 Speed Travel Time 

 

Figure 14. Spatiotemporal and boundary observations on US-101 mainlines. (upstream and 
downstream values are represented by blue and red lines, respectively) 

Table 3 presents the quality measures of the speed estimates obtained from solving first order 
velocity based continuum traffic flow model (LWR-v) model with Greenshields’ flux using 
Godunov finite difference scheme on a space-time plane (Sadabadi and Haghani, 2011). 

Table 3. Speed estimation quality 

Time Period Resolution 
Error (mph) Absolute Error (mph) 

Mean Std. 
Dev. 

%-ile Mean Std. 
Dev. 

%-ile 
25 50 75 25 50 75 

0750am-0805am 210ft*2sec 2 6 -3 2 7 6 4 3 5 8 
420ft*4sec 3 5 -1 3 7 5 4 2 4 7 

0805am-0820am 210ft*2sec 1 5 -2 1 4 4 4 1 3 6 
420ft*4sec 1 5 -2 0 4 4 3 1 3 6 

0820am-0835am 210ft*2sec 2 6 -2 1 5 4 4 2 3 6 
420ft*4sec 2 5 -2 1 5 4 4 1 3 6 
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Solutions belonging to all three 15 minute periods in the morning rush hour are presented. At 
both resolutions the estimates are comparable in terms of their accuracy. The bias in speed 
estimates varies between one and three miles per hour, while the mean absolute speed errors are 
in the four to six miles per hour range. 

Table 4. Travel time estimation quality using observed speeds 

Time Period Resolution 
Error (sec) Absolute Error (sec) 

Mean Std. 
Dev. 

%-ile Mean Std. 
Dev. 

%-ile 
25 50 75 25 50 75 

FTBS Scheme 

0750am-0805am 210ft*2sec 1 2 0 1 3 2 2 1 2 3 
420ft*4sec 2 2 1 2 3 2 1 1 2 3 

0805am-0820am 210ft*2sec 1 3 0 0 1 2 3 0 1 2 
420ft*4sec 1 2 0 1 2 2 2 0 1 2 

0820am-0835am 210ft*2sec 1 3 -1 0 2 2 2 0 1 3 
420ft*4sec 1 2 0 1 2 2 2 1 1 3 

Godunov Scheme 

0750am-0805am 210ft*2sec 4 5 1 3 6 5 4 1 3 7 
420ft*4sec 4 3 1 3 5 4 3 2 3 5 

0805am-0820am 210ft*2sec 2 6 0 1 4 4 5 1 2 6 
420ft*4sec 1 4 0 1 3 3 3 1 2 4 

0820am-0835am 210ft*2sec 2 6 -1 1 5 4 5 1 2 6 
420ft*4sec 2 4 0 1 4 3 3 1 2 4 

 

Even though the speed accuracy seems to be high enough for travel time estimation in this case, 
it is desirable to have a measure of the impact of speed accuracy on travel times estimates. To 
this end, travel times were estimated based on both observed and estimated speeds. At the same 
time, this will provide a basis for evaluating the accuracy of proposed travel time estimation 
schemes independent of the quality of speeds used in such estimations. 

Quality measures of travel time estimates obtained based on observed speeds using FTBS and 
Godunov schemes are presented in Table 4. Travel time estimates obtained applying FTBS 
scheme have a one to two second bias while their mean absolute error is consistently about two 
seconds in all three time periods and under both discretization scenarios. However, the Godunov 
scheme has resulted in slightly higher bias varying from one to four seconds and higher mean 
absolute errors between three to five seconds under these circumstances. Comparing the first and 
third quartiles with the median of error distribution in both methods suggests that errors are 
generally symmetrically distributed. Despite the fact that Godunov scheme has generated larger 
errors in this case it seems that as congestion increases its performance improves as opposed to 
FTBS scheme which has displayed a rather uniform performance throughout this case. 

Figure 15 illustrates the spatiotemporal travel time estimates at 210 feet by 2 second resolution 
using observed speeds and their mean absolute error variation over time period 08:05am to 
08:20am in the morning rush hour. 



69 
 

  

  

 FTBS Godunov 

 

Figure 15. Travel time estimates based on observed speeds on US-101 mainlines (top: 
spatiotemporal travel time estimates, bottom: mean absolute error) 

However, it is most interesting to see how the two schemes have performed when speed 
estimates rather than observations are used in the estimation process. Table 5 presents quality 
measures of travel time estimates based on estimated speeds using FTBS and Godunov schemes. 
Table 5 shows that travel time estimates obtained applying FTBS scheme have a six to nine 
second bias, while their mean absolute error is seven to ten seconds in all three time periods and 
under both discretization scenarios. Table 5 also shows that, generally speaking, Godunov 
scheme has resulted in similar bias varying from six to eight seconds and comparable mean 
absolute errors between six to nine seconds under these circumstances. Again judging by the 
relative extent of the middle quartiles of the error distributions it seems that error distributions 
are symmetric. 
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Table 5. Travel time estimation quality using estimated speeds 

Time Period Resolution 
Error (sec) Absolute Error (sec) 

Mean Std. 
Dev. 

%-ile Mean Std. 
Dev. 

%-ile 
25 50 75 25 50 75 

FTBS Scheme 

0750am-0805am 210ft*2sec 7 5 4 6 10 7 4 4 7 10 
420ft*4sec 7 4 4 6 9 7 4 4 7 9 

0805am-0820am 210ft*2sec 7 7 2 5 12 8 6 2 6 12 
420ft*4sec 6 6 2 5 10 7 6 2 5 10 

0820am-0835am 210ft*2sec 9 9 2 8 13 10 8 4 8 13 
420ft*4sec 8 8 3 8 12 9 7 4 8 12 

Godunov Scheme 

0750am-0805am 210ft*2sec 7 5 4 6 10 7 4 4 7 10 
420ft*4sec 6 4 3 6 9 6 4 4 6 9 

0805am-0820am 210ft*2sec 7 7 2 5 11 8 6 2 6 12 
420ft*4sec 6 6 1 4 9 6 5 1 5 9 

0820am-0835am 210ft*2sec 8 9 2 7 12 9 8 4 8 12 
420ft*4sec 8 8 3 7 11 8 7 3 7 11 

 

Figure 16 illustrates the spatiotemporal travel time estimates at 210 feet by 2 second resolution 
using estimated speeds and their mean absolute error variation over time period 08:05am to 
08:20am in the morning rush hour. 

In essence, three factors capable of affecting performance of the proposed schemes for travel 
time estimation that is speed accuracy, traffic congestion level and discretization level are 
considered in our tests. 

First, accuracy of speeds used in such estimation has a direct effect on the quality of travel time 
estimates. Therefore, to provide a benchmark for comparison, two sets of travel time estimates 
based on observed and estimated speeds are reported in the numerical experiments. These 
experiments showed that proposed schemes are indeed very accurate when accurate speeds are 
used. In fact, under this scenario travel time estimates with MAPE of about 6% and 10% were 
obtained using FTBS and Godunov schemes, respectively. However, travel time as an integral of 
traffic pace suffers from the presence of error in underlying speeds. Even though the MAE of 
speed estimates was in four to six mile per hour range, travel time estimates based on them were 
disproportionately less accurate. Under these circumstances FTBS and Godunov schemes have 
almost similar performance in terms of the accuracy. 
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 FTBS Godunov 

 

Figure 16. Travel time estimates based on estimated speeds on US-101 mainlines (top: 
spatiotemporal travel time estimates, bottom: mean absolute error) 

Second, in our experiments congestion level and therefore the extent to which smoothness 
assumption is violated is varied in each of the three US-101 fifteen minute datasets. These 
datasets represent increasing congestion levels over time during a typical morning rush hour. 
Arguably, Godunov scheme exhibited a better performance at higher congestion levels as 
opposed to the FTBS scheme which quickly loses its edge as traffic conditions become more 
volatile. 

Finally, specifics of the solution domain discretization which effectively determines the solution 
resolution is considered as an important factor which impacts the accuracy of proposed finite 
difference schemes. In the experiments two discretization stencils are examined. However, it 
should be noted that due to the limited length of the US-101 segment covered in the datasets as 
well as rather high free flow speed on this segment testing larger stencils was impossible. 
Despite these limitations, comparing errors at tested resolutions suggest that errors will decrease 
as the cell size increases. This observation is compatible with the fact that with increasing cell 
sizes variations inside the cells are smoothed out while discrepancies between adjacent cells 

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

Time Interval, 2sec

M
ea

n 
A

bs
ol

ut
e 

E
rro

r (
se

c)

Travel Time Estimate Error

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

Time Interval, 2sec

M
ea

n 
A

bs
ol

ut
e 

E
rro

r (
se

c)

Travel Time Estimate Error



72 
 

become more pronounced. Therefore, it may be expected that at lower resolutions Godunov 
scheme will exhibit better performance compared to the FTBS scheme. 

5.5 Summary 

In this chapter, multiple high resolution data sets made available under NGSIM project are 
introduced as possible cases for numerical experimentation in this proposed research. Later, 
different numerical experiments on US 101 dataset of NGSIM project are reported. The reported 
experiments include applications in traffic data fusion, estimation, and travel time estimation 
using a proposed PDE model. 

6 Findings of Dynamic Travel Time Prediction 

6.1 Data Collection and Analysis 

6.1.1 Acquire INRIX Data 
Data reduction for the available INRIX data is an important task to be accomplished during this 
study. The acquired data set will be used to construct the travel database, and to develop and test 
the travel time prediction algorithm. After signing the Date Use Agreement (DUA) with RITIS 
and sending the request for INRIX data, two packages of probe data on I-64 and I-264 from the 
time period of October 2008 to November 2012 are obtained, as illustrated in Figure 17 (a) and 
(b), respectively.  

 

(a) INRIX data for I-64 
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(b) INRIX Data for I-264 

Figure 17. INRIX data for I-64 and I-264. 

According to Figure 18, the aggregated speed data on the RITIS website demonstrate the data 
coverage information for I-64. The gray color indicates that the corresponding area has no data at 
all, and the green/yellow/red color indicates that traffic measurement is available. During the 
time period before October 7 2011, only the first 11 freeway sections include traffic data 
measurement. Those 11 sections are located east of I-295, which is out of the range of the study 
area. Therefore, the INRIX data for those sections cannot be used for this study. The speed data 
from other sections are available starting from 12:00 p.m. on October 6, 2011. However, the 
Hampton Roads Bridge-Tunnel (HRBT) still had no measurement until the end of January 2012. 
Finally, the full coverage data can be observed from the end of January 2012 through November 
2012.  
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Figure 18. Aggregated INRIX data for I-64 from RITIS website. 

The same procedure of data analysis for I-264 is also conducted using the service from the RITIS 
website, and the display of aggregated INRIX data is presented in Figure 19. Similar to I-64, no 
measurement data were collected on I-264 before October 6, 2011. Afterward, the speed data 
measurements have almost full coverage on I-264 from October 6, 2011 to November 2012.  
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Figure 19. Aggregated INRIX data for I-264 from RITIS website. 

As illustrated in Figure 18 and Figure 19, the ideal coverage of traffic measurements along I-64 
and I-264 from Richmond to Virginia Beach starts on October 7, 2011, and ends on November 
30, 2012. Considering that serious congestion mainly occurs along I-64 during that time, the 
summer holiday season (June, July, and August) is the main focus of this study. The summer 
2012 data are not available when the proposed algorithm is tested; however, a third data package 
collected by INRIX and covering January to December of 2010 was added to this study. 
Therefore, the summer 2010 data can be used in this study to validate the algorithms of travel 
time prediction. 
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The INRIX data from October 7, 2011, to November 30, 2012 are used to construct the first data 
set along I-64 and I-264. The 2010 INRIX data are used to construct the second data set with the 
same freeway stretch from Richmond to Virginia Beach. It should be noted that the data 
resolution and coverage are different between two data sets. The first data set has a fine 
resolution over the spatial and temporal domains as the data collection time interval is usually 
around 1 minute. Comparatively, the second data set includes a coarse coverage with 5 minutes 
of data representation and missing data during early morning/late night and weekends. The 
detailed information of data set representation will be described in the following sections. 

6.1.2 Problems with Raw Data 
Since the size of the raw data is very large (e.g., freeway sections on I-64 from October 2011 to 
January 2012 include 3.33 GB raw data), Microsoft Excel or Access cannot open the data 
directly. SAS and MATLAB are used to filter the raw data to obtain the spatiotemporal average 
speed data of each individual day. The raw data are presented in Figure 20. Each row is 
generated by "tmc_code" and "measurement_tstamp." The speed information is used during this 
study to represent the traffic state of the corresponding roadway section at each time interval. 
The geographical information for each "tmc_code," which corresponds to a freeway section, is 
defined in a separate file. However, there is no information given to define the spatial 
relationship of each section. Consequently, the first step of data reduction is to sort all sections 
from west to east along I-64, as shown in Figure 21. The same procedure for sorting sections is 
adopted for I-264. 

 

 Figure 20. INRIX raw data. 
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(a)  

 

... 

 

(b) 

Figure 21. Sorted freeway sections along I-64. 

A total of 92 sections are included in the mentioned I-64 data. However, two sections are not 
geographically consistent, as shown in Figure 22. The 91st section is overlaid by the 52nd 
section, and the 92nd section is overlaid by the 84th section. However, the 85th section shares a 
boundary with the 92nd section, not with the 84th section. Two overlaid sections are highlighted 
in yellow in Figure 21 (b). Both cases occur on the freeway ramps, and the research team 
believes that the traffic data for overlaid sections are collected to calculate the travel time leaving 
or coming from ramps on I-64. These cases will be used to adjust travel time computation 
accordingly to meet future needs. 
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(a) 

 

(b) 

Figure 22. Geographically inconsistent sample sections. 

The raw data set is loaded as Coordinated Universal Time (UTC); therefore, an adjustment is 
needed to change the time zone to Eastern Standard Time (EST). Specifically, the UTC from 
January 1 to March 13 and November 7 to December 31 during 2010 entails subtracting 5 hours, 
while the remainder of the 2010 data entails subtracting 4 hours. The raw data of 2011 and 2012 
are adjusted accordingly. The probe data collected for irregular time intervals present another 
problem for data analysis. As illustrated in Figure 23, the measurement time interval varies 
between 59 seconds to 6 minutes. The irregular time interval will increase difficulty of data 
aggregation and data estimation during this study. Since most raw data collected after October 
2011 are measured in a 1-minute interval, this part of the data is aggregated by calculating the 
average speed every 1 minute. The 2010 raw data are aggregated every 5 minutes.   
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Figure 23. Sample irregular time interval of raw data. 

When INRIX created freeway segments to collect traffic data, the fact that I-64 and US-60 run 
concurrently for some distance was not considered. As a result, the collected traffic data for I-64 
tunnel segments were listed under US-60 until January 20, 2012. Therefore, the research team 
requested (through RITIS) all past INRIX data for the US-60 highway in order to obtain the 
tunnel traffic data. The tunnel section was marked by "TMC 110+14251" in the US-60 data set 
with a section length of 3.716 miles. The available data we can obtain about this section are also 
collected between October 7, 2011 and January 20, 2012. This data set will be used to fill the gap 
of the tunnel segment on I-64 for the first data set. It should be pointed out that the tunnel 
segment on I-64 was separated by five sections after January 20, 2012, instead of just one 
section. Therefore, the collected traffic data for the tunnel area provide more detailed 
information after January 20, 2012. 

Unlike the above information – where the I-64 tunnel segment is represented by one section 
between October 7, 2011 to January 20, 2012, and five sections afterward – the tunnel in the 
2010 INRIX data set includes three sections corresponding to TMC identification numbers 
"110+14251," "110P14251," and "110+14252." The fact of different spatial segment 
compositions and various data collection time intervals will be considered accordingly to 
construct the travel database and to develop a prediction algorithm. 

6.2 Travel Database Construction 

After solving the aforementioned problems of raw INRIX data, a spatiotemporal traffic speed 
map can be generated for each individual day in order to construct the travel database. To serve 
the purpose of travel time prediction, the travel database should include full daily coverage of 
spatiotemporal speed information. Such information will be used in the prediction algorithm to 
obtain similar traffic patterns between the current day and historical data and to forecast future 
traffic information. After constructing the daily spatiotemporal speed map on the INRIX data set, 
the problem of missing data is discovered to be a serious problem. The missing data problem 
varies with different data sets. The existence of missing data and the corresponding solutions are 
presented in this section. A selected 37-mile freeway stretch from Newport News to Virginia 
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Beach is used to demonstrate the missing data problem. The same freeway stretch is used on the 
first case study to evaluate the proposed algorithm. 

Considering the different data resolutions of spatial section composition and various data 
collection time intervals, two travel data sets are constructed as presented below. 

• Travel Database 1: Based on INRIX data from October 7, 2011, to November 30, 2012; 
represented by 96 sections across the space axis and a 1-minute time interval across the 
time axis. 

• Travel Database 2: Based on 2010 INRIX data; represented by 90 sections across the 
space axis and a 5-minute time interval across the time axis. 

6.2.1 Generate Daily Spatiotemporal Speed Map for Travel Database 1 
The freeway stretch used during this study includes sections along I-64 and I-264 from I-295 
(east of Richmond) to I-264 (Virginia Beach). The entire 95-mile freeway is divided into 96 
sections as shown in Figure 24. The section location is represented by mile posts starting from 
the first section in Richmond.   

 

Figure 24. Freeway stretch for Travel Database 1. 

Combining the data for I-64, I-264, and US-60, the speed data set along the entire freeway 
stretch is available from October 7, 2011, to November 30, 2012. After aggregating the speed 
data across space (section length) and time (1 minute), the daily temporal-spatial speed map is 
obtained. The speed map samples of typical weekday and weekend travel for Travel Database 1 
are presented in Figure 25. The blue color represents free-flow speed, and the red color 
represents traffic congestion. It should be mentioned that the tunnel segment was covered by 
only one measurement for each time interval before January 20, 2012. This segment of data was 
filled by one section from US-60 as described in the Acquire INRIX Data section. For this case, 
the typical weekdays are represented as Figure 25 (a), (b), and (c). The typical weekend is 
represented as Figure 25 (d). Here we observe that the problem of missing data across the time 
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space (between 1 to 20 minutes) occurs occasionally. The white strip areas of Figure 25 (a) and 
(c) demonstrate the missing data. The same approach of using neighboring data to estimate the 
missing measurement area is used for Travel Databases 1 and 2.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 25. Samples of daily spatiotemporal speed map for Travel Database 1. 
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Since the problem of missing data is more serious in Travel Database 2, detailed information of 
the estimation performance will be presented in the next section. Conversely, the tunnel segment 
was covered by five sections (five measurements for each time interval) since January 20, 2012.    
In this case, the typical weekday and weekend traffic maps are represented by Figure 25 (e) and 
(f), respectively. Moreover, the tunnel area includes more dynamic information compared with 
the blurred areas corresponding to the tunnel traffic status presented in Figure 25 (a) through (d). 

6.2.2 Generate Daily Spatiotemporal Speed Map for Travel Database 2 
The same freeway stretch along I-64 and I-264 from I-295 (east of Richmond) to I-264 (Virginia 
Beach) is used to construct Travel Database 2. The entire freeway is divided by 90 sections 
instead of the 96 sections in Travel Database 1, as shown in Figure 26. The same mile post 
representation as with Travel Database 1 is used to maintain consistency. 

 

Figure 26. Freeway stretch for Travel Database 2. 

The historical INRIX data for 2010 are analyzed using the same approach as for the 2011 data 
set except the time interval for the 2010 historical data is 5 minutes. We observe that traffic 
during weekends is usually uncongested in the 2011 data set. However, this differs for the 
summer season in the 2010 INRIX data, during which significant congestion is observed to occur 
during some weekends. Consequently, it is necessary to construct Travel Database 2 using 2010 
INRIX data, especially if travel time predictions during the summer season should be 
investigated. To better illustrate the detailed traffic status for the 2010 INRIX data, a 37-mile 
freeway stretch is selected for Travel Database 2 that includes most of the congested areas along 
the entire freeway stretch. The selected freeway stretch is located between Newport News and 
Virginia Beach from the 33rd section to the 90th section. The same stretch is also used in the 
first case study for algorithm testing. 

The data samples for typical weekday and weekend traffic occurring during June 2010 are 
presented in Figure 27. The figure illustrates a significant amount of missing data, especially for 
June 5 and June 6, 2010 (Saturday and Sunday). It appears from inspection of the data that the 
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weekends involve more missing data than is the case for the weekdays, which may pose a 
problem, especially when making travel time predictions for weekend days. According to the 
speed map of Figure 27 (a) and (c), most missing data (white area) for a typical weekday occur 
between 21:00 p.m. and 5:00 a.m. (i.e., during the night and early morning hours). Normally 
there is low traffic volume during this time period, and free-flow speed could be assumed. 
However, sometimes the missing data also occur around a congested area (e.g., the speed map of 
Figure 27 e and g). Consequently, free-flow speed cannot be simply assumed for all missing 
data.  

As demonstrated in the Literature Review section, various traffic data estimation algorithms are 
developed depending on the data resource. Since ramp traffic data are not available, greater 
errors will be introduced to macroscopic traffic models for estimating missing data. 
Alternatively, a statistical approach is employed here that uses temporal and spatial speed values 
around missing data. The average value of eight neighboring cells is used to estimate the missing 
speed data. Advanced approaches such as using kernel regression over spatial and temporal 
coordinates can be considered in the future. The samples of estimated speed maps for typical 
weekday and weekend traffic in June 2010 are presented in the right-hand columns of Figure 27.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 27. Samples of daily spatiotemporal speed map for Travel Database 2.  
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6.3 Test Environment 

This section aims to investigate the performance of the proposed travel time prediction algorithm. 
In total, three case studies are conducted and the proposed algorithm is compared with different 
methods using the second travel database from 2010. The first travel database from October 
2011 to November 2012 is expected to fuse with the 2010 data set to conduct more extensive 
tests in the future study. Since heavy traffic volume is usually observed along I-64 and I-264 
heading to Virginia Beach during the summer season and on weekends, efficient and accurate 
travel time prediction can be helpful to travelers in planning their trips and reducing traffic 
congestion around the area. Considering that most of the congestion areas between Richmond 
and Virginia Beach are located before the Hampton Roads Bridge-Tunnel or along I-264, a 37-
mile freeway stretch is selected as the test site for the first two case studies before the extensive 
testing on the entire 95-mile freeway. The 37-mile freeway stretch selected is from Newport 
News to Virginia Beach along I-64 and I-264 and includes 59 sections as shown in Figure 28. 
Eventually, the third case study is conducted on the entire 95-mile freeway from Richmond to 
Virginia Beach. The detailed information of experiment setups and discoveries are provided as 
below. 

 

Figure 28. Selected 37-mile freeway stretch for case studies 1 and 2. 

6.4 Case Study 1 

Because traffic congestion for the selected freeway stretch is significant during the summer 
holiday season and on weekends, the evaluation of the travel-time prediction algorithm focuses 
on traffic data from June to August of 2010 in this case study. Traffic data from June and July 
are used for the training data set and the August data are used for the testing data set. The 
dynamic travel time is calculated every 5 minutes using the daily spatiotemporal traffic speed 
map, as shown in Figure 8, which serves as the ground truth data. The prediction span p equals 
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zero for this test, which indicates that the future trip starting from the current time is the 
prediction output. The average travel time is predicted using Equation (173). 

Different parameters are tested to identify the best combination to minimize the prediction error. 
The range of L, which represents the data length across the time axis (look ahead time duration), 
is between 10 to 60 minutes at 10-minute intervals. H is another parameter representing the shift 
distance across the time space when searching for a traffic map slice from the historical data set 
(look back duration). The size of H should not be too small. Otherwise, many overlapping map 
slices may be extracted for comparison to the current traffic map, and the computation time 
would be significant. Conversely, detailed information may be ignored if the value of H is too 
large. Therefore, the domain of the H value is also tested from 10 to 60 minutes at 10-minute 
increments. 

Both relative and absolute prediction errors are calculated during this study to evaluate the 
proposed algorithm. The relative error is computed as the Mean Absolute Percentage Error 
(MAPE) using Equation (174). This error is the average absolute percentage change between the 
predicted and the true values. The corresponding absolute error is presented by the Mean 
Absolute Deviation (MAD) of Equation (175). This error is the absolute difference between the 
predicted and the true values.  
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Here J is the total number of days in the testing the data set (i.e., 30 days); I is the total number 
of time intervals in one day (i.e., 204 intervals occurring every 5 minutes between 5:00 a.m. and 
10:00 p.m.); and y𝑖

𝑗 and 𝑦�𝑖
j denote the ground truth and the predicted value, respectively, of the 

dynamic travel time for the ith time interval on the jth day during August 2010. 

The relative and absolute errors calculated by the proposed method across various parameters are 
presented in Table 6 and Table 7, respectively. Both the minimum relative error of 5.96% and 
the minimum absolute error of 2.96 min are obtained assuming that L = 20 minutes and H = 40 
minutes. According to the tables, prediction errors are comparatively stable values of 6% and 3 
min when L is less than 40 minutes. The change of the H value seems to have little impact on the 
average prediction accuracy under this situation. The optimum values of parameters can be used 
as a reference for applications on different sites. 
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Table 6. Relative errors by proposed travel time prediction method. 

MAPE (%) Time Interval of H (min.) 
10 20 30 40 50 60 

Tim
e Interval of L 

(m
in) 

10 6.09 5.98 6.13 5.98 6.00 6.03 
20 6.07 6.01 6.14 5.96 5.99 6.05 
30 6.17 6.05 6.14 5.99 5.97 5.98 
40 6.24 6.12 6.14 6.10 6.06 6.02 
50 6.27 6.15 6.20 6.15 6.21 6.12 
60 6.37 6.32 6.31 6.25 6.33 6.20 

 

Table 7. Absolute errors by proposed travel time prediction method. 

MAD (min.) Time Interval of H (min.) 
10 20 30 40 50 60 

Tim
e Interval of L 

(m
in) 

10 3.02 2.98 3.05 2.99 2.99 3.00 
20 3.05 3.00 3.06 2.96 3.00 3.02 
30 3.11 3.04 3.08 3.01 3.00 3.00 
40 3.15 3.08 3.08 3.07 3.04 3.03 
50 3.17 3.09 3.11 3.10 3.12 3.09 
60 3.22 3.19 3.18 3.14 3.19 3.14 

 

 

To better evaluate the proposed method in this case study, a traditional KNN algorithm (Qiao et 
al. 2012, Bustillos and Chiu 2011) is tested to predict travel time by applying the same training 
and testing data sets. However, instantaneous travel time is used in the KNN method instead of 
dynamic travel times as is used in the literature. Assuming the purpose is to predict the travel 
time starts from time interval t, the traditional KNN method uses the travel time sequence 
between recent past t-L and time interval t-1 to find a similar data sequence in the historical data 
set. However, the dynamic travel time of the recent past travel time sequence may not be 
available since the trip has not been completed (the travel time is around 38 min under free-flow 
speed for the selected 37-mile freeway stretch). Therefore, instantaneous travel times between 
time interval t-L and t-1 are used in the KNN method to predict travel time in the next time 
interval t.  
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Table 8. Relative errors by KNN method. 

MAPE (%) Time Interval of H (min.) 
10 20 30 40 50 60 

Tim
e Interval of L 

(m
in) 

10 6.80 6.68 6.85 6.68 6.70 6.74 
20 6.78 6.71 6.86 6.85 6.69 6.76 
30 6.61 6.59 6.61 6.69 6.66 6.68 
40 6.97 6.84 6.86 6.81 6.77 6.73 
50 7.01 6.87 6.93 6.87 6.94 6.83 
60 7.11 7.06 7.05 6.98 7.07 6.92 

 

Table 9. Absolute errors by KNN method. 

MAD (min.) Time Interval of H (min.) 
10 20 30 40 50 60 

Tim
e Interval of L 

(m
in) 

10 3.51 3.53 3.55 3.51 3.53 3.52 
20 3.52 3.49 3.51 3.50 3.53 3.56 
30 3.52 3.48 3.47 3.51 3.56 3.54 
40 3.56 3.58 3.54 3.60 3.59 3.64 
50 3.59 3.61 3.58 3.67 3.64 3.68 
60 3.67 3.64 3.64 3.68 3.71 3.73 

 

The same 10 closest candidates are selected using the Euler distance to calculate the average 
travel time for the future trip. The relative and absolute errors calculated by the proposed method 
across various parameters are presented in Table 8 and Table 9, respectively. The optimum 
parameter of L, which represents the domain of continuous time included in the traffic map slice, 
is 30 minutes; the corresponding minimum relative and absolute prediction errors are 6.59% and 
3.47 min, respectively. Therefore, the average performance of the proposed method includes 
fewer errors compared to the traditional KNN method for our database. The main difference 
between the two methods is that the travel time sequence is used to obtain similar traffic patterns 
from historical data in the KNN method, while the traffic status across the spatial and temporal 
axes are used in the proposed method. The spatiotemporal traffic status provides more travel 
information given that it accounts for the spatial variation in the information. Therefore, such 
information serves a better pattern-matching result from the historical data and results in a more 
accurate travel time prediction performance. Moreover, the instantaneous travel time predicted 
by the KNN method may deviate substantially from the dynamic travel time under transient 
states during the trip. Based on the testing results, we observed that the predicted travel time 
using the KNN method is usually underestimated when congestion is forming and is 
overestimated when congestion is dissipating. 

A comparison of the two methods for a typical weekday (i.e., August 2, 2010) is presented in 
Figure 29. The typical weekday traffic occurring on the selected 37-mile freeway stretch usually 
includes two peak hours during the morning and afternoon peaks. The traffic congestion is 
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especially serious during afternoon peak hours. The ground truth curve in Figure 29 indicates 
that the travel time during this period could be more than two times (78 minutes) the travel time 
occurring during a free-flow period (38 minutes). The red curve obtained from the proposed 
method is a better fit to the ground truth data for congested and uncongested time periods. 
However, the blue curve obtained by the KNN method underestimates the actual travel time 
during congested afternoon periods and overestimates the actual travel time as the peak ends 
around 18:00 p.m. Consequently, the proposed method produces more accurate travel time 
prediction results compared to the KNN method for the subject day. 

 

Figure 29. Comparison of prediction results for a typical weekday (August 2, 2010). 

Another comparison of the two methods for typical weekend traffic occurring on August 7, 2010, 
is presented in Figure 30. Unlike typical weekday traffic, light traffic congestion occurs during 
the weekend that lasts for an extended time as many travelers go to Virginia Beach for that time 
period. Although the prediction accuracy is almost the same for this day when using the two 
methods, the green curve calculated by the traditional KNN approach also indicates that the 
deviation from ground truth data happens under transient states during which congestion is 
forming or dissipating.  
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Figure 30. Comparison of prediction results for a typical weekend (August 7, 2010). 

 

6.5 Case Study 2 

Based on the results of case study 1, several improvements are adopted to improve the prediction 
accuracy of the proposed method. Consequently, a revised travel time prediction algorithm is 
proposed with the detailed revisions that have been described earlier. The selected 37-mile 
freeway stretch from Newport News to Virginia Beach is also used to investigate the 
performance of the revised prediction algorithm. Since serious congestion usually happens 
during the summer season on I-64 and I-264 heading to Virginia Beach, the traffic data on 
August 2010 is used as the testing data set. All the previous traffic data from April to July 2010 
are used as the historical data set.  

In order to better evaluate the performance of the proposed approach, three other methods from 
the previous studies are also tested on the same data set. Descriptions of all prediction methods 
are presented below. 

1) Method 1: summation of the real-time traffic data across all the segments of freeway 
stretch. 

2) Method 2: Kalman filter approach using the travel times from previous time intervals to 
define the transition function. 

3) Method 3: k-nearest-neighbor method to predict the travel time by the selected similar 
travel time sequence from the historical data set. 

4) Method 4: the proposed revised travel time prediction algorithm. 
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As with the previous case study, both absolute (mean absolute errors [MAE]) and relative 
(MAPE) errors are used to measure the prediction accuracy. The prediction results of the four 
methods are presented in Table 10. The prediction results are calculated for different days of a 
week (from Monday to Sunday), and the proposed method has the fewest prediction errors, 
except for Wednesday and Sunday. The average errors demonstrate that the proposed method is 
the best travel time prediction method. The best method for each row is highlighted by the blue 
color. 

Table 10. Prediction results of four methods. 

  Method1 Method2 Method3 Method4 
  MAE(min) MAPE(%) MAE(min) MAPE(%) MAE(min) MAPE(%) MAE(min) MAPE(%) 
Monday 2.07 4.57 2.37 5.25 1.99 4.44 1.68 3.75 
Tuesday 2.14 4.86 2.47 5.60 2.17 4.91 2.02 4.48 
Wednesday 2.70 5.77 3.06 6.53 2.63 5.64 2.70 5.76 
Thursday 2.68 5.84 2.99 6.58 2.71 5.90 2.31 4.87 
Friday 2.90 5.94 3.41 6.99 2.80 5.75 2.64 5.45 
Saturday 2.64 5.69 3.23 6.94 2.61 5.62 2.45 5.22 
Sunday 1.29 3.19 1.51 3.74 1.27 3.15 1.44 3.55 
Average 2.34 5.12 2.72 5.95 2.31 5.06 2.18 4.73 

  

Considering the real application, the accurate travel time prediction during congested time 
periods is more important to the traveler, since the traveler can change the trip schedule 
accordingly to avoid getting stuck in a traffic jam. On the other hand, the travel time prediction 
during uncongested time periods attracts less concern since it does not have much of an effect on 
the traveler's trip. In order to investigate the prediction results for congested and uncongested 
time periods, the absolute and relative errors are aggregated by every 2-hour interval, as 
presented in Table 11. 
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Table 11. Prediction results of four methods for different time periods. 

    Method1 Method2 Method3 Method4 
    MAE(min) MAPE(%) MAE(min) MAPE(%) MAE(min) MAPE(%) MAE(min) MAPE(%) 

Monday 

6 am - 8 am 1.63 3.77 1.95 4.55 1.58 3.61 1.91 4.42 
8 am - 10 am 1.10 2.73 1.42 3.54 1.15 2.86 0.91 2.28 
10 am - 12 pm 0.98 2.52 1.27 3.26 0.96 2.47 0.96 2.45 
12 pm - 14 pm 1.07 2.68 1.31 3.31 1.08 2.71 1.23 3.05 
14 pm - 16 pm 1.89 4.10 2.05 4.50 1.90 4.08 1.49 3.25 
16 pm - 18 pm 4.78 9.04 5.33 9.97 4.40 8.43 3.66 6.95 
18 pm - 20 pm 3.03 7.17 3.24 7.63 2.89 6.92 1.62 3.87 

Tuesday 

6 am - 8 am 1.78 4.15 2.16 5.07 1.78 4.13 1.64 3.89 
8 am - 10 am 1.32 3.36 1.57 3.97 1.41 3.56 1.18 2.97 
10 am - 12 pm 1.49 3.60 1.90 4.64 1.44 3.50 1.52 3.59 
12 pm - 14 pm 1.52 3.66 1.88 4.49 1.46 3.52 1.58 3.70 
14 pm - 16 pm 2.58 5.54 2.88 6.25 2.58 5.53 2.76 5.94 
16 pm - 18 pm 4.35 8.61 4.93 9.64 4.49 8.90 4.32 8.23 
18 pm - 20 pm 1.98 5.13 1.97 5.12 2.01 5.23 1.16 3.04 

Wednesday 

6 am - 8 am 1.46 3.57 1.81 4.44 1.41 3.46 1.51 3.75 
8 am - 10 am 2.07 4.60 2.19 4.96 2.06 4.59 2.20 4.90 
10 am - 12 pm 3.52 7.29 4.11 8.46 3.54 7.29 3.43 6.75 
12 pm - 14 pm 2.29 4.96 3.08 6.63 1.98 4.32 2.51 5.20 
14 pm - 16 pm 3.01 6.17 3.14 6.43 3.08 6.34 3.06 6.35 
16 pm - 18 pm 4.49 8.65 5.00 9.51 4.31 8.33 4.49 8.98 
18 pm - 20 pm 2.05 5.17 2.10 5.31 2.05 5.15 1.70 4.38 

Thursday 

6 am - 8 am 2.81 5.32 2.91 5.73 2.82 5.34 2.93 5.51 
8 am - 10 am 3.40 8.01 3.79 8.78 3.40 8.07 2.28 4.79 
10 am - 12 pm 1.11 2.82 1.56 3.96 1.14 2.88 1.07 2.68 
12 pm - 14 pm 1.42 3.53 1.60 3.97 1.44 3.59 1.70 4.17 
14 pm - 16 pm 2.42 5.33 2.65 5.99 2.50 5.49 2.71 5.90 
16 pm - 18 pm 4.44 8.27 5.02 9.34 4.60 8.56 3.57 6.48 
18 pm - 20 pm 3.14 7.62 3.37 8.26 3.03 7.38 1.88 4.56 

Friday 

6 am - 8 am 1.64 4.02 1.87 4.66 1.54 3.80 1.60 3.92 
8 am - 10 am 1.63 4.04 2.00 4.96 1.60 3.97 1.47 3.60 
10 am - 12 pm 1.57 3.76 1.85 4.43 1.56 3.74 1.83 4.38 
12 pm - 14 pm 2.66 5.75 3.18 6.89 2.66 5.79 3.40 7.13 
14 pm - 16 pm 4.57 8.54 5.32 9.89 4.18 7.84 3.85 6.96 
16 pm - 18 pm 4.61 7.78 5.73 9.80 4.35 7.30 4.21 6.86 
18 pm - 20 pm 3.58 7.71 3.89 8.30 3.67 7.85 3.23 6.67 

Saturday 

6 am - 8 am 1.03 2.72 1.14 3.00 1.00 2.63 0.72 1.90 
8 am - 10 am 0.90 2.36 1.14 2.96 0.94 2.44 0.88 2.28 
10 am - 12 pm 1.66 3.93 2.04 4.90 1.58 3.75 1.56 3.71 
12 pm - 14 pm 2.94 6.19 4.00 8.40 2.86 6.02 2.69 5.70 
14 pm - 16 pm 3.53 7.10 4.29 8.67 3.46 6.96 3.39 7.02 
16 pm - 18 pm 4.14 7.98 5.03 9.66 4.11 7.89 4.71 8.91 
18 pm - 20 pm 4.31 9.56 4.96 10.96 4.34 9.66 3.18 7.04 

Sunday 

6 am - 8 am 0.67 1.78 0.78 2.06 0.70 1.86 0.76 1.99 
8 am - 10 am 0.72 1.91 0.79 2.08 0.72 1.90 0.88 2.33 
10 am - 12 pm 0.94 2.44 1.11 2.89 0.92 2.41 0.81 2.11 
12 pm - 14 pm 1.06 2.66 1.34 3.38 1.02 2.56 1.12 2.74 
14 pm - 16 pm 1.65 3.98 1.91 4.64 1.55 3.77 2.12 5.11 
16 pm - 18 pm 1.29 3.25 1.59 4.03 1.25 3.17 1.59 4.06 
18 pm - 20 pm 2.69 6.29 3.05 7.08 2.74 6.40 2.83 6.50 

 
According to the results in Table 11, the proposed method has the fewest prediction errors for 
most of the congested time periods, especially for evening peak hours (14 p.m. - 20 p.m.). For 
the uncongested time period, or the cases in which the proposed method does not work well, 
method 1 and method 3 produce the fewest errors. The detailed comparisons of prediction 
accuracy by different methods for every time period are demonstrated below. 
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Figure 31. The ground truth travel time data and the comparison of four methods for 
Monday. 

According to the travel time curves on Monday, there is mitigated congestion during morning 
peak hours (6 a.m. - 9 a.m.) and heavy congestion during afternoon peak hours (14 p.m. - 20 
p.m.). The proposed method produces the fewest errors for the afternoon peak hours.  
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Figure 32. The ground truth travel time data and the comparison of four methods for  
Tuesday. 

According to the travel time curves on Tuesday, there is mitigated congestion during morning 
peak hours (6 a.m. - 9 a.m.) and heavy congestion during afternoon peak hours (16 p.m. - 20 
p.m.). The proposed method produces the least errors for both the morning and afternoon peak 
hours. 
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Figure 33. The ground truth travel time data and the comparison of four methods for 
Wednesday. 

According to the travel time curves on Wednesday, there is mitigated congestion during morning 
peak hours (6 a.m. - 9 a.m.) and heavy congestion during afternoon peak hours (14 p.m. - 19 
p.m.). The proposed method does not work well for both morning and afternoon peak hours, 
since there is abnormal congestion on August 18 (heavy congestion around 10a.m.) and August 
25 (heavy congestion between 10 a.m. to 14 p.m.). Such abnormal congestion increases the 
difficulty of finding similar traffic patterns from the historical data set; therefore, the proposed 
method cannot produce the fewest prediction errors on Wednesday. This problem may be solved 
if such abnormal traffic data are included on our historical database. 

 

Figure 34. The ground truth travel time data and the comparison of four methods for 
Thursday. 
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According to the travel time curves on Thursday, there is mitigated congestion during morning 
peak hours (6 a.m. - 9 a.m.) and heavy congestion during afternoon peak hours (15 p.m. - 20 
p.m.). The proposed method produces the fewest errors for both the morning and afternoon peak 
hours. The results from 6 a.m. - 8 a.m. and 14 p.m. - 16 p.m. demonstrate that the proposed 
method does not work very well when the congestion is forming; however, it works very well 
when congestion is dispatching, as compared to other methods. 

 

Figure 35. Method error relative to ground truth for Friday. 

According to the travel time curves on Friday, there is mitigated congestion during morning peak 
hours (7 a.m. - 9 a.m.) and heavy congestion during afternoon peak hours (14 p.m. - 20 p.m.). 
The proposed method produces the fewest errors for both the latter half of the morning peak 
period and the afternoon peak hours. 

According to the travel time curves on Saturday, the congestion occurs for a longer time from 11 
a.m. to 20 p.m. than it does on weekdays. The proposed method works well, except the time 
period of 16 p.m. - 18 p.m.  

According to the travel time curves on Sunday, congestion happens irregularly during the 
afternoon and evening. The proposed method does not work very well for such scenarios. 
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Figure 36. Method error relative to ground truth for Saturday. 

 

Figure 37. Method error relative to ground truth for Sunday. 
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6.6 Case Study 3 

The entire 95-mile freeway stretch from Richmond to Virginia Beach is used in this case study to 
test the revised prediction algorithm. The same testing data set of 31 days in August 2010 as in 
the previous case studies is also used. All the previous traffic data since April 1, 2010 are used as 
the historical data set. For instance, if the current testing day is August 21, 2010, the historical 
data set is constituted by the 142 days from April 1, 2010 to August 20, 2010. 

 

Figure 38. Freeway stretch from Richmond to Virginia Beach along I-64 and I-264. 

In order to evaluate the performance of the proposed algorithm, the predicted travel time is 
compared with the instantaneous travel time as currently used by the Virginia Department of 
Transportation. For an actual trip, the experienced travel time is the actual travel time for a 
vehicle to travel from its origin to its destination. The roadway speed will not only change across 
space but also across time during the trip. Comparatively, the instantaneous travel time is the 
summation of real-time section travel times without the consideration of speed evolution across 
time. Many traffic agencies use instantaneous travel time to represent the future travel time 
information and provide this to drivers, which is valid if the current traffic status remains 
constant until the completion of the trip. However, instantaneous travel time may deviate 
substantially from the experienced travel time under transient states during which congestion is 
forming or dissipating. 
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Figure 39. Spatiotemporal traffic state map and trip trajectories. 

The temporal-spatial traffic state map is obtained from raw INRIX data on August 2, 2010 as 
presented in Figure 39. The differences between the instantaneous and experienced travel times 
are demonstrated by plotting the vehicle trajectories using both approaches. For a trip starting at 
6:00 a.m., the instantaneous travel time is computed as 90 minutes (using the instantaneous 
speed values along all roadway segments at 6:00 a.m.) and the trip trajectory is depicted by the 
left black line. However, the corresponding experienced travel time (100 minutes) from the left 
red trajectory is 10 minutes longer than the instantaneous travel time, since the trajectory 
experiences the morning congestion (6:30 - 8:00 a.m.) before the tunnel along I-64. Large 
differences between instantaneous and experienced travel times occur during the afternoon peak 
hours because of heavy congestion. The instantaneous travel time starting at 14:00 p.m. is 
calculated as 92 minutes from the middle black trajectory, during which no congestion is 
included. But the experienced trajectory represented by the middle red curve is 117 minutes, 
since the trip encounters the tunnel congestion at around 14:30 p.m. and the low speed sections 
along I-264 at around 15:30 p.m. Therefore, the instantaneous travel time underestimates the 
experienced travel time by 25 minutes. The last demonstration is the opposite situation: the 
instantaneous travel time at 19:30 p.m. is 123 minutes, since the traffic is highly congested at 
two locations (tunnel and I-264). However, the experienced trajectory represented by the right 
red curve is 95 minutes and encounters almost no congestion. The instantaneous travel time 
overestimates the experienced travel time by 28 minutes in this case. To sum up, the above 
trajectories demonstrate that the instantaneous travel time calculated using the real-time data is 
not a good approach for predicting the experienced travel time, especially during congested 
periods.  

The proposed approach is used to predict the temporal-spatial traffic states using historical data 
to construct vehicle trajectories and estimate travel times. The actual experienced travel time is 
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calculated on the test data set as the ground truth. In order to effectively compare the 
instantaneous travel time results with the proposed approach, the congestion periods are 
extracted to calculate the prediction errors. The congestion status can be defined if the speed is 
less than 80% of the free flow speed. Therefore, the congested travel time can be identified if the 
travel time is higher than 1.25 times the free flow speed travel time. Generally, up to four 
congestion periods may be extracted during a day by aggregating the adjacent time intervals of 
congested status, which are morning, noon, afternoon, and evening congested periods. 
Considering the 31 days in August 2010, totally 57 congested periods are identified. The MAEs 
are calculated to compare the prediction accuracies between the predicted travel times and 
ground truth values during congested periods. By sorting the MAEs of instantaneous travel time 
and plotting the corresponding errors from two methods, the differences in prediction 
performance can be demonstrated in Figure 40. The average MAE by instantaneous travel time is 
9.2 minutes and the average MAE from the proposed method is reduced to almost half error of 
4.8 minutes. Among the 57 total congested periods, the proposed method produces many fewer 
errors (averaging less than 40%) than does the instantaneous travel time assumption for 49 
periods. The samples of congested periods for August 4, 2010 and August 27, 2010 are 
highlighted in Figure 40. The proposed method outperforms instantaneous travel time during all 
congested periods for these two days. 

 

Figure 40. Average MAE of congested periods by two methods. 

In order to investigate the maximum deviation between prediction results and ground truth data, 
the maximum MAE for using two methods for different testing days is selected and presented in 
Figure 41. The range of maximum MAE by instantaneous method is 11.7 - 44.5 minutes. The 
range of maximum MAE by the proposed method is 8.5 - 26.2 minutes, which is much lower 
than for the instantaneous method. 
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Figure 41. Maximum MAE by two methods for August 2010. 

The travel time curves by the proposed prediction method, the instantaneous travel time, and the 
ground truth data for a typical weekday – August 4, 2010 –are presented in Figure 42 (a). The 
instantaneous travel time experiences some time lag to the ground truth data, especially during 
the time that congestion is forming or dissipating. Specifically, the instantaneous travel time 
highly underestimates the ground truth value when congestion is forming, and overestimates the 
ground truth travel time when congestion is dissipating. Comparatively, the proposed method 
improves the prediction performance when congestion is forming but still has some lag. The 
prediction performance during the congestion dissipating period is highly improved by the 
proposed method, since the propagation of shockwave can be predicted according to the 
historical trend from selected candidates. For instance, comparing the prediction errors by the 
proposed and instantaneous approach on August 4, 2010, the maximum reductions for 
congestion forming and dissipating periods are 12 minutes (from 13.4 to 1.4 minutes) at 14:30 
p.m. and 25 minutes (from 25.8 to 0.8 minutes) at 17:40 p.m., respectively. The other benefit of 
the proposed approach is that travel time distribution can also be predicted other than as a 
deterministic value. The 95% and 5% confidence intervals of the predicted travel times are 
calculated as the upper and bottom boundaries as shown in Figure 42 (b). The green shadow area 
between boundaries covers most of the ground truth data curve, which demonstrates that the 
proposed approach provides very good accuracy to predict travel time reliability. 
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(a) 

 

(b) 

Figure 42. Travel time prediction results on August 04, 2010. 
 (a) Comparison between the proposed approach and instantaneous travel time; (b) The 

upper and bottom boundaries of proposed approach. 

 

(a) 

 

(b) 
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(c) (d) 

Figure 43. Predicted travel time distribution on August 04, 2010. 
(a) 9 a.m. (b) 15 p.m. (c) 16 p.m. (d) 17 p.m. 

Besides calculating the upper and bottom boundaries of travel time reliability, the travel time 
distribution can also be predicted by the proposed algorithm. Each selected candidate traffic 
status is corresponding to a predicted travel time and an associated weight value, which has been 
described in Equation (173). The weight value represents the dissimilarity between current and 
historical traffic patterns and can be used to calculate the probability of the associated travel time 
prediction result. Consequently, the predicted travel time distribution can be calculated for each 
time interval, as presented in Figure 43. The mean of travel time distribution is denoted by red 
dots and compared with the ground truth travel time value to demonstrate the high prediction 
accuracy. Rather than computing the mean value, other statistical representations can also be 
calculated as the prediction output. For instance, computing the 80th percentile in Figure 43 can 
be another option and maybe has less error to ground truth data. More importantly, the previous 
work of the research team to model travel time distribution can also be considered to improve 
prediction accuracy in the future study.  

Similarly, the proposed approach outperforms the instantaneous approach on August 27, 2010, as 
shown in Figure 44. The maximum reductions of prediction errors by the proposed approach are 
12.2 minutes (from 15 to 2.8 minutes) at 12:55 p.m. and 17.4 minutes (from 17.7 to 0.3 minutes) 
at 17:55 p.m. during congestion forming and dissipating periods, respectively.  

 

(a) 

 

(b) 

Figure 44. Travel time prediction results on August 27, 2010. 
(a) Comparison between the proposed approach and instantaneous travel times; (b) The 

upper and lower boundaries of proposed approach. 
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7 Conclusions 

7.1 Traffic Estimation 

Based on the smoothness assumption and a kinematics principle a general first-order model 
relating directional derivatives of a priori travel time with speed at each point in the time-space 
domain is presented. This model due to its PDE form makes it possible to estimate travel times 
without the need for trajectory construction based on speeds which is in effect a cumbersome 
integration operation. A forward time backward space (FTBS) finite difference scheme is 
presented to approximate the general model. 

While the general model and its corresponding FTBS solution scheme are designed for smooth 
situations, the real traffic stream is replete with discontinuities (shockwaves) especially as 
congestion increases. For these situations an equivalent conservative model is proposed. The 
model derivation is based on the first order continuum traffic flow model with Greenshields flux. 
A Godunov scheme is proposed to approximate the conservative model. This scheme is expected 
to provide a robust solution in presence of abrupt discontinuities in the solution domain. 

In order to illustrate the performance of the proposed travel time models and their corresponding 
solution schemes, the US-101 dataset from NGSIM project is used. In essence, three factors 
affecting performance of the proposed schemes are investigated; that is speed accuracy, traffic 
congestion level, and discretization level. 

To provide a benchmark for comparison, two sets of travel time estimates based on observed and 
estimated speeds are reported in the numerical experiments. These experiments showed that 
proposed schemes are indeed very accurate when accurate speeds are used. In fact, under this 
scenario travel time estimates with mean absolute percent error (MAPE) of about 6% and 10% 
were obtained using FTBS and Godunov schemes, respectively. However, travel time as an 
integral of traffic pace (inverse of speed) suffers from the presence of error in underlying speeds. 
Even though the mean absolute error (MAE) of speed estimates was in four to six mile per hour 
range, travel time estimates based on them were disproportionately less accurate. Under these 
circumstances FTBS and Godunov schemes have almost similar performance in terms of their 
accuracy. 

In reported experiments congestion level and therefore the extent to which smoothness 
assumption is violated is varied in each of the three US-101 fifteen minute datasets. These 
datasets represent increasing congestion levels over time during a typical morning rush hour. 
Arguably, Godunov scheme exhibited a better performance at higher congestion levels as 
opposed to the FTBS scheme which quickly loses its edge as traffic conditions become more 
volatile. 

Finally, specifics of the solution domain discretization which effectively determines the solution 
resolution is considered as an important factor which impacts the accuracy of proposed finite 
difference schemes. In the experiments two discretization stencils are examined. However, it 
should be noted that due to the limited length of the US-101 segment covered in the datasets as 
well as rather high free flow speed on this segment testing larger stencils was impossible. 
Despite these limitations, comparing errors at tested resolutions suggest that errors will decrease 
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as the cell size increases. This observation is compatible with the fact that with increasing cell 
sizes variations inside the cells are smoothed out while discrepancies between adjacent cells 
become more pronounced. Therefore, it may be expected that at lower resolutions Godunov 
scheme will exhibit better performance compared to the FTBS scheme. However, this needs to 
be further verified in future experiments. 

7.2 Dynamic Travel Time Prediction 

The following conclusions can be drawn from the study of dynamic travel time prediction: 

• Traffic state estimation and prediction form the basis of travel time prediction, given that 
spatiotemporal traffic state information is required to compute travel times.  

• Dynamic travel times reflect experienced roadway travel times better than instantaneous 
travel times. This study is the first attempt to quantify and address such problems through 
the use of spatiotemporal traffic state information to predict dynamic travel times. 

• Based on the reduction of INRIX data, a travel database was constructed for this study 
that includes daily spatiotemporal traffic state data (in this case, speed measurement) over 
the past 2.5 years along I-64 and I-264 (Richmond to Virginia Beach). The travel 
database is an important resource for future traffic applications in the Virginia Beach 
area. 

• A new algorithm was developed that utilizes the spatiotemporal traffic-state information 
to predict travel times. Historical candidate data with similar traffic patterns to the current 
traffic status are selected using the proposed algorithm. These candidates are then 
aggregated to predict travel times. 

• INRIX data for the selected 37-mile freeway stretch (Newport News to Virginia Beach) 
are used to test the prediction accuracy of the proposed algorithm. The results indicate 
that the proposed algorithm can accurately predict future travel times more accurately 
than three state-of-the-practice methods; those being: use of instantaneous measurements, 
a Kalman filter, and the k-nearest-neighbor method. 

• The case study on the entire 95-mile freeway stretch from Richmond to Virginia Beach 
demonstrates the superiority of the proposed algorithm over the instantaneous approach, 
which is currently used by VDOT. Specifically, the proposed method reduces the 
prediction error by 50 percent compared to the state-of-the-practice instantaneous 
approach, especially at the shoulders of the peak periods. 

• The proposed algorithm is flexible in terms of data resolution and sensing technology, 
and easily transferable to new locations. In addition, the proposed algorithm generates a 
travel time distribution as opposed to a single travel time estimate, which is typically 
done by current models. 

The following are the recommendations resulting from the study of dynamic travel time 
prediction: 
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1. The proposed algorithm employed during this study provides a framework to use 
spatiotemporal traffic data to predict dynamic travel times. More advanced template 
matching or pattern recognition techniques should be considered and tested within the 
proposed algorithm to identify similar traffic patterns more efficiently and accurately.  

2. The tests in this study only included summer data for a single year. The prediction 
accuracy is expected to improve if more summer data from previous years can be 
provided. In addition, different validation methods can be considered to better utilize the 
limited summer data, such as leave one out cross validation (LOOCV). In this approach, 
each summer day can be used as testing data while the remaining days are used as 
historical data. 

3. The historical data set did not include weather, incident, or special day information. If 
such information can be used in the historical data set, the prediction of current day will 
be improved since a refined data set can be used to find similar traffic states more 
accurately. For instance, a subset of the database can be used for rainy conditions as 
opposed to using the entire data set. The development of such data will require the 
development of some clustering techniques to identify unique traffic state clusters. 

4. Integrate loop detector data in addition to INRIX probe data. Traffic counts collected 
from loop detectors can be used to quantify ramp flows. Such information can be used 
with macroscopic traffic flow models to predict traffic states. In this way, both the 
advantages of macroscopic traffic modeling and the data-driven approach proposed in 
this study can be combined to predict travel times more accurately. 

5. Develop algorithms to identify bottleneck locations using spatiotemporal speed data 
measurements to enhance the identification of similar traffic patterns. In addition, the 
impact of scheduled events on travel times should also be incorporated in the prediction 
algorithm, such as tunnel closures, etc. This can be done using the combined macroscopic 
traffic stream modeling and statistical modeling approaches. 

6. Develop optimum methods to display travel time information. Since the proposed 
approach can be used in real-time applications and travel time distributions can be 
predicted instead of a single travel time estimate, the following aspects should be 
considered. Such as with the time interval to update predicted travel time, display average 
travel time, upper/lower travel time bounds, or 80th percentile travel times, etc. 

7. Implement the proposed algorithm on different corridors to test the transferability of the 
approach. The predicted travel times on different corridors can be used to develop control 
strategies for route choice recommendations or area congestion reduction. A key input to 
these approaches is conducting research on how drivers respond to the provision of real-
time information and how they switch their routes of travel depending on the information 
provided to them. 

8. The problem of missing data should be examined during future studies considering that 
such problems are common in the field application. Different data estimation algorithms 
should be developed regarding various data sources and application requirements. 
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